Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 766: 136343, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34774980

ABSTRACT

The adult dentate gyrus (DG) of the hippocampal formation is a specialized region of the brain that creates new adult-born neurons from a pool of resident adult neural stem and progenitor cells (aNSPCs) throughout life. These aNSPCs undergo epigenetic and epitranscriptomic regulation, including 3D genome interactions, histone modifications, DNA modifications, noncoding RNA mechanisms, and RNA modifications, to precisely control the neurogenic process. Furthermore, the specialized neurogenic niche also uses epigenetic mechanisms in mature neurons and glial cells to communicate signals to direct the behavior of the aNSPCs. Here, we review recent advances of epigenetic regulation in aNSPCs and their surrounding niche cells within the adult DG.


Subject(s)
Adult Stem Cells , Dentate Gyrus , Epigenesis, Genetic , Neural Stem Cells , Neurogenesis , Stem Cell Niche , Animals , Humans
2.
Elife ; 92020 03 10.
Article in English | MEDLINE | ID: mdl-32149606

ABSTRACT

Chromosome segregation during male meiosis is tailored to rapidly generate multitudes of sperm. Little is known about mechanisms that efficiently partition chromosomes to produce sperm. Using live imaging and tomographic reconstructions of spermatocyte meiotic spindles in Caenorhabditis elegans, we find the lagging X chromosome, a distinctive feature of anaphase I in C. elegans males, is due to lack of chromosome pairing. The unpaired chromosome remains tethered to centrosomes by lengthening kinetochore microtubules, which are under tension, suggesting that a 'tug of war' reliably resolves lagging. We find spermatocytes exhibit simultaneous pole-to-chromosome shortening (anaphase A) and pole-to-pole elongation (anaphase B). Electron tomography unexpectedly revealed spermatocyte anaphase A does not stem solely from kinetochore microtubule shortening. Instead, movement of autosomes is largely driven by distance change between chromosomes, microtubules, and centrosomes upon tension release during anaphase. Overall, we define novel features that segregate both lagging and paired chromosomes for optimal sperm production.


Subject(s)
Chromosome Pairing/physiology , Chromosome Segregation/physiology , Meiosis/physiology , Spermatocytes/physiology , Spindle Apparatus/physiology , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins , Male , X Chromosome
3.
J Vis Exp ; (149)2019 07 24.
Article in English | MEDLINE | ID: mdl-31403615

ABSTRACT

Adult neurogenesis is a dynamic process by which newly activated neural stem cells (NSCs) in the subgranular zone (SGZ) of the dentate gyrus (DG) generate new neurons, which integrate into an existing neural circuit and contribute to specific hippocampal functions. Importantly, adult neurogenesis is highly susceptible to environmental stimuli, which allows for activity-dependent regulation of various cognitive functions. A vast range of neural circuits from various brain regions orchestrates these complex cognitive functions. It is therefore important to understand how specific neural circuits regulate adult neurogenesis. Here, we describe a protocol to manipulate neural circuit activity using designer receptor exclusively activated by designer drugs (DREADDs) technology that regulates NSCs and newborn progeny in rodents. This comprehensive protocol includes stereotaxic injection of viral particles, chemogenetic stimulation of specific neural circuits, thymidine analog administration, tissue processing, immunofluorescence labeling, confocal imaging, and imaging analysis of various stages of neural precursor cells. This protocol provides detailed instructions on antigen retrieval techniques used to visualize NSCs and their progeny and describes a simple, yet effective way to modulate brain circuits using clozapine N-oxide (CNO) or CNO-containing drinking water and DREADDs-expressing viruses. The strength of this protocol lies in its adaptability to study a diverse range of neural circuits that influence adult neurogenesis derived from NSCs.


Subject(s)
Electrophysiological Phenomena , Hippocampus/cytology , Neural Stem Cells/cytology , Animals , Clozapine/analogs & derivatives , Clozapine/pharmacology , Electrophysiological Phenomena/drug effects , Male , Mice , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Neurons/cytology , Neurons/drug effects
4.
PLoS One ; 14(3): e0209865, 2019.
Article in English | MEDLINE | ID: mdl-30913243

ABSTRACT

AIM: We aimed to assess the resistance rates of antimicrobial-resistant, in bacterial pathogens of epidemiological importance in 47 Mexican centers. MATERIAL AND METHODS: In this retrospective study, we included a stratified sample of 47 centers, covering 20 Mexican states. Selected isolates considered as potential causatives of disease collected over a 6-month period were included. Laboratories employed their usual methods to perform microbiological studies. The results were deposited into a database and analyzed with the WHONET 5.6 software. RESULTS: In this 6-month study, a total of 22,943 strains were included. Regarding Gram-negatives, carbapenem resistance was detected in ≤ 3% in Escherichia coli, 12.5% in Klebsiella sp. and Enterobacter sp., and up to 40% in Pseudomonas aeruginosa; in the latter, the resistance rate for piperacillin-tazobactam (TZP) was as high as 19.1%. In Acinetobacter sp., resistance rates for cefepime, ciprofloxacin, meropenem, and TZP were higher than 50%. Regarding Gram-positives, methicillin resistance in Staphylococcus aureus (MRSA) was as high as 21.4%, and vancomycin (VAN) resistance reached up to 21% in Enterococcus faecium. Acinetobacter sp. presented the highest multidrug resistance (53%) followed by Klebsiella sp. (22.6%) and E. coli (19.4%). CONCLUSION: The multidrug resistance of Acinetobacter sp., Klebsiella sp. and E. coli and the carbapenem resistance in specific groups of enterobacteria deserve special attention in Mexico. Vancomycin-resistant enterococci (VRE) and MRSA are common in our hospitals. Our results present valuable information for the implementation of measures to control drug resistance.


Subject(s)
Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/epidemiology , Acinetobacter/drug effects , Escherichia coli/drug effects , Female , Gram-Negative Bacteria/classification , Gram-Negative Bacterial Infections/microbiology , Humans , Klebsiella/drug effects , Male , Mexico/epidemiology , Prevalence , Retrospective Studies , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...