Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neuroanat ; 3: 22, 2009.
Article in English | MEDLINE | ID: mdl-19949452

ABSTRACT

The sense of smell plays a crucial role in mammalian social and sexual behaviour, identification of food, and detection of predators. Nevertheless, mammals vary in their olfactory ability. One reason for this concerns the degree of development of their pars basalis rhinencephali, an anatomical feature that has been considered in classifying this group of animals as macrosmatic, microsmatic or anosmatic. In mammals, different structures are involved in detecting odours: the main olfactory system, the vomeronasal system (VNS), and two subsystems, namely the ganglion of Grüneberg and the septal organ. Here, we review and summarise some aspects of the comparative anatomy of the VNS and its putative relationship to other olfactory structures. Even in the macrosmatic group, morphological diversity is an important characteristic of the VNS, specifically of the vomeronasal organ and the accessory olfactory bulb. We conclude that it is a big mistake to extrapolate anatomical data of the VNS from species to species, even in the case of relatively close evolutionary proximity between them. We propose to study other mammalian VNS than those of rodents in depth as a way to clarify its exact role in olfaction. Our experience in this field leads us to hypothesise that the VNS, considered for all mammalian species, could be a system undergoing involution or regression, and could serve as one more integrated olfactory subsystem.

2.
Microsc Res Tech ; 70(8): 752-62, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17394199

ABSTRACT

The enormous morphological diversity and heterogeneity of the vomeronasal system (VNS) in mammals--as well as its complete absence in some cases--complicates the extrapolation of data from one species to another, making any physiological and functional conclusions valid for the whole Mammalian Class difficult and risky to draw. Some highly-evolved macrosmatic mammals, like sheep, have been previously used in interesting behavioral studies concerning the main and accessory olfactory systems. However, in this species, certain crucial morphological peculiarities have not until now been considered. Following histological, histochemical and immunohistochemical procedures, we have studied the vomeronasal organ (VNO) and the accessory olfactory bulb (AOB) of adult sheep. We have determined: (1) that all structures which classically define the VNO in mammals are present and well developed, providing the morphological basis for functional activity. (2) that, conversely, there is only a scant population of scattered mitral/tufted cells. One morphological consequence of both details is that the strata of the AOB in adult sheep are not as sharply defined as in other species; moreover, the small number of the mitral/tufted cells in the AOB may imply that the VNS of adult sheep is not capable of functioning in the way a well-developed VNS does in other species. (3) the zone to zone projection from the apical and basal sensory epithelium of the VNO to the anterior and posterior part of the AOB, respectively, typical in rodents, lagomorphs and marsupials, is not present in adult sheep.


Subject(s)
Sheep/anatomy & histology , Vomeronasal Organ/anatomy & histology , Animals , Biomarkers/analysis , Immunohistochemistry , Microscopy, Confocal , Microscopy, Electron, Scanning , Models, Animal , Olfactory Bulb/anatomy & histology , Species Specificity , Vomeronasal Organ/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...