Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(11): e21797, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027580

ABSTRACT

Many studies have been conducted to focused on developing an optimal alkali/surfactant/polymer (ASP) composition to increase the recovered fraction of oil in reservoirs that have already undergone water injection. To analyze the effect of alkali (Na2CO3), surfactant (lauryl sodium sulfate), and polymer (commercial xanthan gum) concentration on oil recovery, a complete factorial experimental design was performed with combinations of three variables (alkali, surfactant, and polymer) and three central point replications (2³ + 3). The experiments were carried out on a core holder using rock samples from the Botucatu formation. The simulated oil reservoirs have an average permeability of 348 mD and a temperature of 60 °C. The crude oil was acquired from the Carmópolis field, with 25.72 °API. Synthetic production water containing 40,000 mg L-1 of NaCl and 13,000 mg L-1 of Na2SO4 was injected through an HPLC pump to saturate the rock samples and to recover the oil in the secondary step. From the experimental results, it was verified that the surfactant and polymer concentrations are the most statistically significant independent variables and that first-order interactions are not statistically significant for the process. The oil recovery factors in the secondary stage ranged between 30 and 36 % of the OOIP, which are within the range reported in the literature. The optimal composition of the ASP fluid obtained a recovered fraction of oil of 62 % in the advanced step. Other combinations reported in the literature used higher concentrations of alkali, surfactant, and polymer with lower recoveries and higher cost in the injection design. Thus, the present study highlights the necessity to investigate the performance of each component of the ASP solution. In addition, the results obtained in this study are very attractive for possible full-scale applications.

2.
Expert Opin Ther Pat ; 30(4): 287-301, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32008403

ABSTRACT

Introduction: This review aims to assess the available technologies, advances, and trends from technological readiness level 4 to level 8 for cancer immunologic therapeutics using the association of OX40 and CPG-ODN, usually known as cancer vaccine.Areas covered: Patent documents and clinic studies referring to the use of CpG-ODN and of OX40 association for cancer therapeutics. Patent data were obtained within the worldwide basis of the European Patent Office (EPO). The 138 patents of 36 patent families found were analyzed focusing on word distribution of technology developers and potential markets, legal status, annual evolution of first priority, technological domains, applicants and co-applicants and detailed analysis of each technology. Two clinical studies are in progress.Expert opinion: Traditional methods in post cancer diagnosis are being replaced by immunological association therapies. It is expected that the development of cancer vaccines will expand the scope of cancer-specific immunotherapy, especially if associated with alternative systems for expression and delivery with future potential. It is expected that genetic and controlled and/or specific nano delivery are improved. Furthermore, these new developments will likely address the problem of long-term treatments, reducing cancer mortality and reducing patient numbers worldwide.


Subject(s)
Cancer Vaccines/therapeutic use , OX40 Ligand , Oligodeoxyribonucleotides , Receptors, OX40/drug effects , Adjuvants, Immunologic , Animals , Humans , Immunotherapy , Patents as Topic
3.
J Environ Manage ; 241: 156-166, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30999265

ABSTRACT

Environmental contamination is a problem that requires sustainable solutions. Bioremediation technologies have been developed in the last decades and are increasingly used to mitigate environmental accidents and systematic contaminations. A review of bioremediation technologies, based on published article and patent documents, is presented for different types of contaminated matrices, bioremediation agents and contaminants. The worldwide database of the European Patent Office was searched using radicals of keyword as well as the International Patent Classification (IPC) to identify patents in our areas of concern. Technological domains, annual filing volume, legal status, assignee countries and development collaborations are presented and examples are discussed. The total number of patents is compared with the total number of articles. A SWOT analysis for bioremediation technologies is presented. The technologies for water (53%), soils (36%), and sludges (11%) are growing yearly at nearly constant rates. The bioremediation agents are predominantly bacteria (57%), enzymes (19%), fungi (13%), algae (6%), plants (4%) and protozoa. The major contaminants are oils (38%), followed by metals (21%), organic waste (21%), polymers (10%), food (5%), cellulose (5%) and biodiesel. Most of the patents are generally originated from China and United States of America. The soils bioremediation technology of oil is centered on bacteria usage (about two thirds of the articles and patents), being fungi a technology with critical mass and high growth potential. A recent trend in oil bioremediation of soils is the combination of bioremediation agents (fungi and bacteria) in the same process, thus making the process more robust to environment changes.


Subject(s)
Soil Pollutants , Technology Assessment, Biomedical , Biodegradation, Environmental , China , Fungi , Oils , Soil
4.
Expert Opin Ther Pat ; 28(7): 561-571, 2018 07.
Article in English | MEDLINE | ID: mdl-29874935

ABSTRACT

INTRODUCTION: Bruxism is among the most chronic dental problems worldwide, and its perception may increase indicatively the condition of people's health, avoiding future health problems. Technologic solutions have improved considerably owing to new diagnostic and treatment technologies and their automation. This review aims to assess therapeutic methods for bruxism through analysis of patent applications spanning recent decades. AREAS COVERED: Patent families of bruxism, and products available on the market. Data were obtained through Questel Orbit from the European Patent Office on a worldwide basis using Cooperative Patent Classification (CPC), analyzing 134 patent families. The products on the market were mapped and classified as used for diagnosis, treatment, or both. EXPERT OPINION: This technological prospect has shown that the technological field of bruxism is growing toward smaller, automated devices; there is still no predominant owner of the technologies. Products are expected to provide home use with a high degree of reliability and specificity, using the Internet of Things (telemedicine associated with industry 4.0) and enabling real-time diagnosis.


Subject(s)
Bruxism/therapy , Equipment and Supplies , Sleep Bruxism/therapy , Bruxism/diagnosis , Equipment Design , Humans , Patents as Topic , Sleep Bruxism/diagnosis
5.
J Gen Appl Microbiol ; 64(1): 1-8, 2018 Mar 27.
Article in English | MEDLINE | ID: mdl-29187682

ABSTRACT

Glycerol is a main co-product of biodiesel production. Crude glycerol may serve as a cheap and attractive substrate in biotechnological applications, e.g. for the production of valuable chemicals or as an electron donor for reduction processes. In this work, sulfate reduction with glycerol was studied at neutral and acidic pH using bioreactor sludge samples and Tinto River sediments as a source of inoculum, respectively. Communities of sulfate-reducing bacteria (SRB) and fermentative bacteria were co-enriched at both pH values. Molecular analyses revealed that sequences belonging to Desulfomicrobium genus were dominant in the cultures enriched at pH 7, while Desulfosporosinus sequences dominated in the culture enriched at pH 4. Glycerol conversion was coupled to sulfate reduction, but the substrate was incompletely oxidized to acetate in the neutrophilic enrichments, and acetate, lactate, and 1,3-propanediol under low pH conditions. Two strains belonging to Desulfomicrobium and Proteiniphilum genera were isolated from the neutrophilic enrichments, but the first isolate was not able to use glycerol, which suggests a syntrophic relationship between glycerol-degrading fermentative bacteria and SRB. A Clostridium strain able to grow with glycerol was isolated from the low pH enrichment. Our data indicate that glycerol promotes the growth of sulfate-reducing communities to form sulfide, which can be used to precipitate and recover heavy metals.


Subject(s)
Bacteria/metabolism , Glycerol/metabolism , Hydrogen-Ion Concentration , Sulfates/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bioreactors/microbiology , DNA, Bacterial , Geologic Sediments/microbiology , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S , Rivers/microbiology , Sewage/microbiology
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt B: 726-30, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25315867

ABSTRACT

This paper presents the results of the validation of a LED spectrofluorimeter patented for the analysis of biodiesel in diesel and non-transesterified residual cooking oil (RCO) in diesel. Detection limit, quantification limit and sensitivity were determined from the regression lines. The spectrofluorimeter validated in this study was adequate for quantifying the amount of biodiesel in diesel in the range from 2% to 45% (B02-B45) with an R-squared value of 0.9962 and a detection limit of 3%. For the analysis of non-transesterified RCO in diesel, the linear range was from 2% to 20% with an R-squared value of 0.9872 and a detection limit of 2%. The accuracy of the equipment for the analysis of biodiesel in diesel and non-transesterified RCO in diesel was evaluated using Student's t-test for paired data. With 95% confidence level there was no significant difference between the actual values and those determined by the equipment.


Subject(s)
Biofuels/analysis , Dietary Fats, Unsaturated/analysis , Gasoline/analysis , Spectrometry, Fluorescence/methods , Limit of Detection
7.
Talanta ; 117: 263-7, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24209339

ABSTRACT

Power transformers are essential for a functioning electrical system and therefore require special attention by maintenance programs because a fault can harm both the company and society. The temperature inside a power transformer and the dissolved gases, which are primarily composed of acetylene, are the two main parameters monitored when detecting faults. This paper describes the development of a device for analyzing the acetylene content in insulating oil using spectrofluorimetry. Using this device introduces a new methodology for the maintaining and operating power transformers. The prototype is currently operating in a substation. The results presented by this system were satisfactory; when compared to chromatographic data, the errors did not exceed 15%. This prototype may be used to confirm the quality of an insulating oil sample to detect faults in power transformers.

8.
Waste Manag ; 33(12): 2670-4, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23993759

ABSTRACT

In Brazil, and mainly in the State of Bahia, crude vegetable oils are widely used in the preparation of food. Street stalls, restaurants and canteens make a great use of palm oil and soybean oil. There is also some use of castor oil, which is widely cultivated in the Sertão Region (within the State of Bahia), and widely applied in industry. This massive use in food preparation leads to a huge amount of waste oil of different types, which needs either to be properly disposed of, or recovered. At the Laboratorio Energia e Gas-LEN (Energy & Gas lab.) of the Universidade Federal da Bahia, a cycle of experiments were carried out to evaluate the recovery of waste oils for biodiesel production. The experiences were carried out on a laboratory scale and, in a semi-industrial pilot plant using waste oils of different qualities. In the transesterification process, applied waste vegetable oils were reacted with methanol with the support of a basic catalyst, such as NaOH or KOH. The conversion rate settled at between 81% and 85% (in weight). The most suitable molar ratio of waste oils to alcohol was 1:6, and the amount of catalyst required was 0.5% (of the weight of the incoming oil), in the case of NaOH, and 1%, in case of KOH. The quality of the biodiesel produced was tested to determine the final product quality. The parameters analyzed were the acid value, kinematic viscosity, monoglycerides, diglycerides, triglycerides, free glycerine, total glycerine, clearness; the conversion yield of the process was also evaluated.


Subject(s)
Biofuels/analysis , Plant Oils/chemistry , Brazil , Industrial Waste , Pilot Projects
9.
Talanta ; 85(1): 430-4, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21645721

ABSTRACT

Oxidation stability is an important quality parameter for biodiesel. In general, the methods used to evaluate the oxidation stability of oils and biodiesels are time-consuming. This work reports the use of spectrofluorimetry, a fast analytical technique, associated with multivariate data analysis as a powerful analytical tool to prediction of the oxidation stability. The prediction of the oxidation stability showed a good agreement with the results obtained by the EN14112 reference method Rancimat. The models presented high correlation (0.99276 and 0.97951) between real and predicted values. The R(2) values of 0.98557 and 0.95943 indicated the accuracy of the models to predict the oxidation stability of soy oil and soy biodiesel, respectively. The residual distribution does not follow a trend with respect to the predicted variables indicating the good quality of the fits.


Subject(s)
Biofuels/analysis , Oils/analysis , Spectrometry, Fluorescence/methods , Calibration , Multivariate Analysis , Oils/chemistry , Oxidation-Reduction , Quality Control , Soybean Oil
10.
Anal Bioanal Chem ; 388(5-6): 1303-10, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17522849

ABSTRACT

Multipumping (MPFS) and multicommuted (MCFS) flow systems relying on pulsed and laminar flows were critically compared. The mixing conditions and dispersion associated with both systems were evaluated by simulating the sample with bromocresol green. The molybdenum blue method for phosphate determination in soil extracts was also implemented in both flow systems. Furthermore, laser-induced fluorescence (LIF) was applied to visualize the dispersing sample; rhodamine B was used as the fluorescent species. The pulsed flow enhanced the mixing of the solutions involved, thus reducing reagent consumption (48 and 96 microl for MPFS and MCFS), and improving sampling rate (67 and 144 h(-1) for MCFS and MPFS). For phosphate determination, results obtained with both systems were precise (r.s.d. < 0.5%; n = 10) and accurate. Analyses of the absorbance vs time/space LIF plots revealed that exploitation of pulsed flow led to a pronounced radial dispersion and to a limited axial dispersion, typical aspects of turbulent flows.


Subject(s)
Chemistry Techniques, Analytical/methods , Bromcresol Green/analysis , Calibration , Fluorescent Dyes/chemistry , Lasers , Models, Chemical , Models, Theoretical , Molybdenum/analysis , Phosphates/analysis , Phosphates/chemistry , Reproducibility of Results , Solutions , Spectrometry, Fluorescence , Time Factors
11.
J Phys Chem B ; 110(14): 7587-91, 2006 Apr 13.
Article in English | MEDLINE | ID: mdl-16599542

ABSTRACT

High-density polyethylene (HDPE) and polypropylene (PP) were studied to identify tailor-made materials for walls of pipelines and ducts for crude paraffinic oil that inhibit paraffin depositions. The interfacial interaction was investigated from 50 to 70 degrees C and as a function of the n-C(36)H(74) paraffin concentration added to the paraffinic crude oil. The static and the dynamic interfacial tensions were observed, respectively, by traditional contact angle measurements and by fluorescence depolarization of the natural fluorescent probes of the crude oil, flowing at a high rate. The static interaction showed a low dependence on the n-paraffin content for both surfaces. For PP, it decreased slightly as the n-paraffin concentration increased, evidencing an increase in the liquid-liquid interaction. The dynamic interfacial tension with PP clearly decreased as temperature and n-paraffin concentration increased, the latter effect being attributed to the PP methyl groups hindering the interaction between the n-paraffin and the PP main chain. For the flow on HDPE, the interaction proved to be highly dependent on the n-paraffin concentration and temperature. It increased as n-paraffin was added and temperature decreased. The former effect is attributed to the alignment of the n-paraffin chains within the high rate flowing liquid and the similar molecular geometry of the n-paraffin and the linear polymer surface (almost without branches), which increases the number of sites available for interaction. PP proved to be more suitable for transportation of crude oil rich in paraffins with more than 36 carbon atoms, while HDPE was more suitable for those with smaller paraffinic chains.

12.
J Colloid Interface Sci ; 281(1): 201-8, 2005 Jan 01.
Article in English | MEDLINE | ID: mdl-15567397

ABSTRACT

This work was concerned with the dependence of the interfacial tension (Gamma(SL)) on surface degree of oxygen content and on polymer branching degree. The static Gamma(SL) was evaluated by contact angle (theta;(c)) and the dynamic Gamma(SL) by fluorescence depolarization of molecular probes seeded in induced flows of monoethylene glycol. The latter results were interpreted using statistical covariant analysis. Two different systems of flowing films were studied: free films flowing on the surfaces on which they impinge and films flowing inside 1-mm-thick microflow cells. The solid surfaces were polyethylene of low density, medium density, high density, and linear with low density, polypropylene, vinyl acetate co-polymer with oxygen content of 15% and 28%, borosilicate, and tin dioxide. Increase in oxygen content of the surface decreased both the static and the dynamic Gamma(SL), which demonstrated that the presence of oxygen atoms hindered wetting. Only the dynamical Gamma(SL) was sensitive to polymer branching, and it increased as branching degree decreased. This was attributed to the higher hydrogen-atom density at the surface, which favored temporary intermolecular bonds between the surface and the flowing liquid.

13.
J Colloid Interface Sci ; 271(1): 201-5, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-14757095

ABSTRACT

A recent trend is the production of workable microchannel flow cells (MF cells). The nondestructive methods used to assess their reliability are based mainly on output monitoring and do not evaluate internal chemical interactions. We investigate a nondestructive method for evaluating changes in the chemical composition of the inner walls based on evaluation of the extent of alignment of a fluorescent probe in a liquid flowing within MF cells. Two MF cells were built with a 10-microm inner spacing. Their inner walls had four parallel SnO(2) strips, 2.00 mm wide, separated by 0.50-mm-wide glass strips. One cell had strips parallel to the flow and the other perpendicular. Flow-induced intermolecular alignment of rhodamine B in monoethylene glycol was scanned with 28-microm precision by fluorescence depolarization, using polarized-laser-induced fluorescence within induced flows (PLF-FI). No changes of polarization were seen when the flow was stopped. Under flowing conditions, polarization was always 4% lower in the glass region as compared to SnO(2). Glass had a higher solid-liquid interfacial tension (determined by contact angle measurements), thus being more wettable and increasing the drag, which propagates into the liquid flow, decreasing polarization. PLF-FI can thus identify regions with different chemical constitutions.

14.
Talanta ; 63(4): 1061-7, 2004 Jul 08.
Article in English | MEDLINE | ID: mdl-18969534

ABSTRACT

A review of the use of the Doehlert matrix as a chemometric tool for the optimization of methods in analytical chemistry and other sciences is presented. The theoretical principles of Doehlert designs are described, including the coded values for the use of this matrix involving two, three, four and five variables. The advantages of this matrix in comparison with other response surface designs, such as central composite and Box-Behnken, designs are discussed. Finally, 57 references concerning the application of Doehlert matrices in the optimization of procedures involving spectroanalytical, electroanalytical and chromatographic techniques are considered.

15.
J Colloid Interface Sci ; 262(1): 221-6, 2003 Jun 01.
Article in English | MEDLINE | ID: mdl-16256598

ABSTRACT

Interfacial interactions control two processes empirically known to be critical for molecular anchoring in twisted nematic liquid crystal displays technology (TN-LCDs): surface treatment and filling procedure. Static and dynamical interfacial tensions (Gamma(SL)) between liquids and several substrates with similar roughness were observed respectively by contact angle (theta(c)) of sessile drops and by fluorescence depolarization of thin liquid films flowing at high velocity. Gamma(SL) decreased when glass was coated with tin dioxide and increased with polyvinyl alcohol (PVA) deposition. Drops were circular for all substrates except rubbed PVA, where they flowed spontaneously along the rubbing direction, reaching an oblong form that had theta(c) parallel and perpendicular to the rubbing direction respectively greater and smaller than theta(c) for non-rubbed PVA. This is attributed to polar group alignment generating an asymmetric Gamma(SL) distribution with nanometric preferential direction, inducing a capillary-like flow. Polarization and anisotropy maps for high-velocity flow parallel to the PVA rubbing direction showed an increase in the net alignment of molecular domains and a widening of the region where it occurred. This is attributed to preferential anchoring in the downstream direction, instead of in several directions, as for non-rubbed PVA. This explains why filling direction is crucial for TN-LCDs homogeneous behavior.

16.
J Autom Methods Manag Chem ; 24(2): 31-9, 2002.
Article in English | MEDLINE | ID: mdl-18924741

ABSTRACT

Maps of polarization and anisotropy can be helpful for flow analysis systems (FIA, CFA, etc.) with reactions dependent on the intermolecular alignment as well as for dispersion control. Maps can be acquired manually, but when a scan over a sample area is required, the acquisition becomes tiresome and has low precision. The paper describes an automatic flexible system for high-precision sample positioning with closed loop self control, remote data acquisition and storage controlled by a BASIC program. The system was developed to acquire maps up to 850 mm(2) of the sample (liquid flows, solids, interfaces, etc.), with up to 100 mum(2) precision. To evaluate the equipment, performance is presented as the scan of a thin liquid film of monoethylene glycol (MEG) flowing on borosilicate. Tests were performed with and without surfactantes at submicellar concentrations: two concentrations of sodium dodecyl sulphate (SDS) and one of polyethylene oxide (PEO). For pure MEG, the intermolecular alignment initially increased, then decreased. When SDS was added, both polarization and anisotropy only increased progressively with the flow. This might be explained by the surfactant decrease of interfacial interaction. When PEO was added, both polarization and anisotropy decreased pronouncedly over the entire map, which might be due to macromolecular aggregates within the bulk generating misaligned molecular domains. The system presented as sample positioning repeatability of 0.1% and a high polarization reproducibility (error margin < 6 in 1000).

SELECTION OF CITATIONS
SEARCH DETAIL
...