Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 12(4)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38675770

ABSTRACT

Vaccines are highly effective at preventing severe coronavirus disease (COVID-19). With mRNA vaccines, further research is needed to understand the association between immunogenicity and reactogenicity, which is defined as the physical manifestation of an inflammatory response to a vaccination. This study analyzed the immune response and reactogenicity in humans, post immunization, to the former SARS-CoV-2 mRNA investigational vaccine CVnCoV (CV-NCOV-001 and CV-NCOV-002 clinical trials). Immunogenicity was investigated using whole-blood RNA sequencing, serum cytokine levels, and SARS-CoV-2-specific antibodies. The T cell responses in peripheral blood were assessed using intracellular cytokine staining (ICS) and high-dimensional profiling in conjunction with SARS-CoV-2 antigen-specificity testing via mass cytometry. Reactogenicity was graded after participants' first and second doses of CVnCoV using vaccine-related solicited adverse events (AEs). Finally, a Spearman correlation was performed between reactogenicity, humoral immunity, and serum cytokine levels to assess the relationship between reactogenicity and immunogenicity post CVnCoV vaccination. Our findings showed that the gene sets related to innate and inflammatory immune responses were upregulated one day post CVnCoV vaccination, while the gene sets related to adaptive immunity were upregulated predominantly one week after the second dose. The serum levels of IFNα, IFNγ, IP-10, CXCL11, IL-10, and MCP-1 increased transiently, peaking one day post vaccination. CD4+ T cells were induced in all vaccinated participants and low frequencies of CD8+ T cells were detected by ex vivo ICS. Using mass cytometry, SARS-CoV-2 spike-specific CD8+ T cells were induced and were characterized as having an activated effector memory phenotype. Overall, the results demonstrated a positive correlation between vaccine-induced systemic cytokines, reactogenicity, and adaptive immunity, highlighting the importance of the balance between the induction of innate immunity to achieve vaccine efficacy and ensuring low reactogenicity.

3.
Vaccine X ; 11: 100189, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35791320

ABSTRACT

Background: The COVID-19 vaccine candidate CVnCoV comprises sequence-optimized mRNA encoding SARS-CoV-2 S-protein encapsulated in lipid nanoparticles. In this phase 2a study, we assessed reactogenicity and immunogenicity of two or three doses in younger and older adults. Methods: Younger (18-60 years) and older (>60 years) adults were enrolled in two sites in Panama and Peru to receive either 6 or 12 µg doses of CVnCoV or licensed control vaccines 28 days apart; subsets received a 12 µg booster dose on Day 57 or Day 180. Solicited adverse events (AE) were reported for 7 days and unsolicited AEs for 4 weeks after each vaccination, and serious AEs (SAE) throughout the study. Humoral immunogenicity was measured as neutralizing and receptor binding domain (RBD) IgG antibodies and cellular immunogenicity was assessed as CD4+/CD8 + T cell responses. Results: A total of 668 participants were vaccinated (332 aged 18-60 years and 336 aged > 60 years) including 75 who received homologous booster doses. Vaccination was well tolerated with no vaccine-related SAEs. Solicited and unsolicited AEs were mainly mild to moderate and resolved spontaneously. Both age groups demonstrated robust immune responses as neutralizing antibodies or RBD-binding IgG, after two doses, with lower titers in the older age group than the younger adults. Neither group achieved levels observed in human convalescent sera (HCS), but did equal or surpass HCS levels following homologous booster doses. Following CVnCoV vaccination, robust SARS-CoV-2 S-protein-specific CD4 + T-cell responses were observed in both age groups with CD8 + T-cell responses in some individuals, consistent with observations in convalescing COVID-19 patients after natural infection. Conclusions: We confirmed that two 12 µg doses of CVnCoV had an acceptable safety profile, and induced robust immune responses. Marked humoral immune responses to homologous boosters suggest two doses had induced immune memory.

4.
Vaccines (Basel) ; 10(4)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35455257

ABSTRACT

A third dose of CVnCoV, a former candidate mRNA vaccine against SARS-CoV-2, was previously shown to boost neutralizing antibody responses against SARS-CoV-2 wild-type in adults aged 18−60 and >60 years in a phase 2a clinical study. In the present study, we report the neutralizing antibody responses to a wild-type and a variant of concern, Delta, after a third dose of the vaccine on day (D)57 and D180. Neutralization activity was assessed using a microneutralization assay. Comparable levels of neutralizing antibodies against the wild-type and Delta were induced. These were higher than those observed after the first two doses, irrespective of age or pre-SARS-CoV-2-exposure status, indicating that the first two doses induced immune memory. Four weeks after the third dose on D180, the neutralizing titers for wild-type and Delta were two-fold higher in younger participants than in older participants; seroconversion rates were 100% for wild-type and Delta in the younger group and for Delta in the older group. A third CVnCoV dose induced similar levels of neutralizing responses against wild-type virus and the Delta variant in both naïve and pre-exposed participants, aligning with current knowledge from licensed COVID-19 vaccines that a third dose is beneficial against SARS-CoV-2 variants.

5.
Wien Klin Wochenschr ; 133(17-18): 931-941, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34378087

ABSTRACT

BACKGROUND: We used the RNActive® technology platform (CureVac N.V., Tübingen, Germany) to prepare CVnCoV, a COVID-19 vaccine containing sequence-optimized mRNA coding for a stabilized form of SARS-CoV­2 spike (S) protein encapsulated in lipid nanoparticles (LNP). METHODS: This is an interim analysis of a dosage escalation phase 1 study in healthy 18-60-year-old volunteers in Hannover, Munich and Tübingen, Germany, and Ghent, Belgium. After giving 2 intramuscular doses of CVnCoV or placebo 28 days apart we assessed solicited local and systemic adverse events (AE) for 7 days and unsolicited AEs for 28 days after each vaccination. Immunogenicity was measured as enzyme-linked immunosorbent assay (ELISA) IgG antibodies to SARS-CoV­2 S­protein and receptor binding domain (RBD), and SARS-CoV­2 neutralizing titers (MN50). RESULTS: In 245 volunteers who received 2 CVnCoV vaccinations (2 µg, n = 47, 4 µg, n = 48, 6 µg, n = 46, 8 µg, n = 44, 12 µg, n = 28) or placebo (n = 32) there were no vaccine-related serious AEs. Dosage-dependent increases in frequency and severity of solicited systemic AEs, and to a lesser extent local AEs, were mainly mild or moderate and transient in duration. Dosage-dependent increases in IgG antibodies to S­protein and RBD and MN50 were evident in all groups 2 weeks after the second dose when 100% (23/23) seroconverted to S­protein or RBD, and 83% (19/23) seroconverted for MN50 in the 12 µg group. Responses to 12 µg were comparable to those observed in convalescent sera from known COVID-19 patients. CONCLUSION: In this study 2 CVnCoV doses were safe, with acceptable reactogenicity and 12 µg dosages elicited levels of immune responses that overlapped those observed in convalescent sera.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Adolescent , Adult , Antibodies, Viral , COVID-19/therapy , COVID-19 Vaccines , Double-Blind Method , Humans , Immunization, Passive , Immunogenicity, Vaccine , Lipids , Middle Aged , RNA, Messenger , SARS-CoV-2 , Young Adult , COVID-19 Serotherapy
6.
Cytokine ; 71(2): 401-4, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25464927

ABSTRACT

Prior to using a new multi-analyte platform for the detection of markers in sputum it is advisable to assess whether sputum processing, especially mucus homogenization by dithiothreitol (DTT), affects the analysis. In this study we tested a novel Human Inflammation Multi Analyte Profiling® Kit (v1.0 Luminex platform; xMAP®). Induced sputum samples of 20 patients with stable COPD (mean FEV1, 59.2% pred.) were processed in parallel using standard processing (with DTT) and a more time consuming sputum dispersion method with phosphate buffered saline (PBS) only. A panel of 47 markers was analyzed in these sputum supernatants by the xMAP®. Twenty-five of 47 analytes have been detected in COPD sputum. Interestingly, 7 markers have been detected in sputum processed with DTT only, or significantly higher levels were observed following DTT treatment (VDBP, α-2-Macroglobulin, haptoglobin, α-1-antitrypsin, VCAM-1, and fibrinogen). However, standard DTT-processing resulted in lower detectable concentrations of ferritin, TIMP-1, MCP-1, MIP-1ß, ICAM-1, and complement C3. The correlation between processing methods for the different markers indicates that DTT processing does not introduce a bias by affecting individual sputum samples differently. In conclusion, our data demonstrates that the Luminex-based xMAP® panel can be used for multi-analyte profiling of COPD sputum using the routinely applied method of sputum processing with DTT. However, researchers need to be aware that the absolute concentration of selected inflammatory markers can be affected by DTT.


Subject(s)
Biomarkers/metabolism , Dithiothreitol/chemistry , Inflammation/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/physiopathology , Sputum/metabolism , Aged , Cohort Studies , Female , Forced Expiratory Volume , Gene Expression Profiling , Humans , Male , Middle Aged , Phosphates/chemistry , Sodium Chloride/chemistry
7.
Mol Immunol ; 48(9-10): 1139-48, 2011 May.
Article in English | MEDLINE | ID: mdl-21435724

ABSTRACT

Sphingosine-1-phosphate (S1P) has been implicated in angiogenesis, inflammation, cancerogenesis, neurological excitability and immune regulation and is synthesized by two different sphingosine kinases (SphK). It was suggested that mice lacking the gene for SphK1 exhibit no obvious phenotype, because SphK2 compensates for its absence. However, recent investigations revealed that under challenge SphK1 contributed to pro-inflammatory processes favoring Th2 and Th17 rather than Th1-type reactions. To investigate the immune modulatory role of SphK1 as opposed to SphK2 specifically for the Th1 propagating IL-12p70 we compared WT and SphK1(-/-) splenocytes and Flt3-ligand differentiated BMCs of WT and SphK1(-/-), representing dendritic cells as major producers of IL-12p70, incubated with LPS. We determined the impact on IL-12p70 in comparison to other inflammatory cytokines, and on DC and macrophage surface marker expression, SphK mRNA, protein expression and enzymatic activity in splenocytes. Our data demonstrated that SphK1 deficiency enhanced LPS-induced IL-12p70 production although SphK2 was present. To further characterize SphK1-dependent IL-12p70 regulation we exogenously applied S1P, SEW2871 and the new potent S1P1 agonist CYM5442. Both S1P and S1P1-specific analogs fully compensated the increase of IL-12p70 production in SphK1-deficient splenocytes. The use of pertussis toxin, to block G(i)-coupled signaling downstream of S1P1, again increased IL-12p70 and neglected the compensation achieved by addition of S1P and S1P1 agonists pointing on the importance of this specific S1P-receptor. Given that, in parallel to a prominent IL-12p35 increase following LPS stimulation, LPS also enhanced SphK expression and total SphK activity, we concluded that SphK1-derived S1P acting via S1P1 is a major mechanism of this negative IL-12p70 feedback loop, which did not affect other cytokines. Moreover, our data showed that SphK2 activity failed to compensate for SphK1 deficiency. These findings clearly point to a divergent and cytokine-specific impact of immune cell SphK1 and SphK2 in chronic inflammation and cancer.


Subject(s)
Interleukin-12/biosynthesis , Lipopolysaccharides/pharmacology , Lysophospholipids/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Sphingosine/analogs & derivatives , Spleen/cytology , Spleen/immunology , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , CD8 Antigens/metabolism , Cell Differentiation/drug effects , Dendritic Cells/cytology , Enzyme Assays , Flow Cytometry , Gene Deletion , Gene Expression Regulation/drug effects , Indans/pharmacology , Interleukin-12 Receptor beta 2 Subunit/genetics , Interleukin-12 Receptor beta 2 Subunit/metabolism , Interleukin-12 Subunit p40/genetics , Interleukin-12 Subunit p40/metabolism , Lymphocyte Activation/drug effects , Membrane Proteins/metabolism , Mice , Oxadiazoles/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Phosphotransferases (Alcohol Group Acceptor)/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sphingosine/metabolism , Spleen/drug effects , Thiophenes/pharmacology , Toll-Like Receptors/immunology
8.
Bioorg Med Chem Lett ; 20(23): 6998-7003, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20965724

ABSTRACT

A series of novel compound libraries inhibiting interleukin-2 inducible T cell kinase (ITK) were designed, synthesized and evaluated. In the first design cycle two library scaffolds were identified showing low micromolar inhibition of ITK. Further iterative design cycles including crystal structure information of ITK and structurally related kinases led to the identification of indolylindazole and indolylpyrazolopyridine compounds with low nanomolar ITK inhibition.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors , Small Molecule Libraries , Animals , Crystallography, X-Ray , Humans , Indazoles/pharmacology , Interleukin-2 , Protein Kinase Inhibitors/analogs & derivatives , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Structure-Activity Relationship
9.
Bioorg Med Chem ; 18(12): 4547-59, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20472447

ABSTRACT

Interleukin-2 inducible T-cell kinase (ITK) is one of five kinases that belong to the Tec kinase family that plays an important role in T-cell and mast cell signaling. Various reports point to a role of ITK in the treatment of allergic asthma. For example, it was shown that mice lacking ITK have reduced airway hyperresponsiveness, inflammation and tracheal responses in an allergic asthma model. In this article, we disclose novel ITK inhibitors based on (4 or 5-aryl)pyrazolyl-indole scaffold that were also found to be selective for ITK over other kinases like IRK, CDK2, GSK3ss and PKA.


Subject(s)
Indoles/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Asthma/drug therapy , Binding Sites , Computer Simulation , Disease Models, Animal , Indoles/chemical synthesis , Indoles/therapeutic use , Mice , Models, Molecular , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...