Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Cancer J ; 30(3): 142-152, 2024.
Article in English | MEDLINE | ID: mdl-38753748

ABSTRACT

ABSTRACT: Steroid receptors regulate gene expression for many important physiologic functions and pathologic processes. Receptors for estrogen, progesterone, and androgen have been extensively studied in breast cancer, and their expression provides prognostic information as well as targets for therapy. Noninvasive imaging utilizing positron emission tomography and radiolabeled ligands targeting these receptors can provide valuable insight into predicting treatment efficacy, staging whole-body disease burden, and identifying heterogeneity in receptor expression across different metastatic sites. This review provides an overview of steroid receptor imaging with a focus on breast cancer and radioligands for estrogen, progesterone, and androgen receptors.


Subject(s)
Breast Neoplasms , Molecular Imaging , Positron-Emission Tomography , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Female , Molecular Imaging/methods , Positron-Emission Tomography/methods , Receptors, Steroid/metabolism , Receptors, Progesterone/metabolism , Receptors, Estrogen/metabolism , Radiopharmaceuticals/metabolism , Receptors, Androgen/metabolism
2.
Neurology ; 101(24): e2585-e2588, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37827846

ABSTRACT

"Leber hereditary optic neuropathy (LHON-Plus)" is a phenotype of LHON that is characterized by extraocular neurologic manifestations, which may be the first manifestations of the disease.


Subject(s)
Neuromyelitis Optica , Optic Atrophy, Hereditary, Leber , Humans , Child, Preschool , Optic Atrophy, Hereditary, Leber/diagnosis , Optic Atrophy, Hereditary, Leber/genetics , Neuromyelitis Optica/diagnosis
3.
Dalton Trans ; 52(41): 15115-15123, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37814941

ABSTRACT

Seven-coordinate rhenium oxo complexes supported by a tetradentate bipyridine carboxamide/carboxamidate ligand are reported. The neutral dicarboxamide H2Phbpy-da ligand initially coordinates in an L4 (ONNO) fashion to an octahedral rhenium oxo precursor, yielding a seven-coordinate rhenium oxo complex. Subsequent deprotonation generates a new oxo complex featuring the dianionic (L2X2) carboxamidate (NNNN) form of the ligand. Computational studies provide insight into the relative stability of possible linkage isomers upon deprotonation. Structural studies and molecular orbital theory are employed to rationalize the relative isomer stability and provide insight into the rhenium-oxo bond order.

4.
Inorg Chem ; 62(5): 2389-2393, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36693197

ABSTRACT

Oxidative addition is an essential elementary reaction in organometallic chemistry and catalysis. While a diverse array of oxidative addition reactions has been reported to date, examples of P-O bond activation are surprisingly rare. Herein, we report the ligand-templated oxidative addition of a phosphinite P-O bond in the diphosphinito aniline compound HN(2-OPiPr2-3,5-tBu-C6H2)2 [H(P2ONO)] at Ni0 to form (PONO)Ni(HPiPr2) after proton rearrangement. Notably, the P-O cleavage occurs selectively over an amine N-H bond activation. Additionally, the ligand cannibalization is reversible, as addition of XPR2 (X = Cl, Br; R = iPr, Cy) to (PONO)Ni(HPiPr2) readily produces either symmetric or unsymmetric (P2ONO)NiX species and free HPiPr2. Finally, the mechanisms of both the initial P-O bond cleavage and its subsequent reconstruction are investigated to provide further insight into how to target P-O bond activation.

5.
J Am Chem Soc ; 144(47): 21443-21447, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36378626

ABSTRACT

Hydride transfer catalysis is shown to be enabled by the nonspectator reactivity of a transition metal-bound low-symmetry tricoordinate phosphorus ligand. Complex 1·[Ru]+, comprising a nontrigonal phosphorus chelate (1, P(N(o-N(2-pyridyl)C6H4)2) and an inert metal fragment ([Ru] = (Me5C5)Ru), reacts with NaBH4 to give a metallohydridophosphorane (1H·[Ru]) by P-H bond formation. Complex 1H·[Ru] is revealed to be a potent hydride donor (ΔG°H-,exp < 41 kcal/mol, ΔG°H-,calc = 38 ± 2 kcal/mol in MeCN). Taken together, the reactivity of the 1·[Ru]+/1H·[Ru] pair comprises a catalytic couple, enabling catalytic hydrodechlorination in which phosphorus is the sole reactive site of hydride transfer.


Subject(s)
Phosphorus , Transition Elements , Ligands , Catalysis , Transition Elements/chemistry , Metals
6.
J Am Chem Soc ; 144(39): 17939-17954, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36130605

ABSTRACT

The kinetics of hydride transfer from Re(Rbpy)(CO)3H (bpy = 4,4'-R-2,2'-bipyridine; R = OMe, tBu, Me, H, Br, COOMe, CF3) to CO2 and seven different cationic N-heterocycles were determined. Additionally, the thermodynamic hydricities of complexes of the type Re(Rbpy)(CO)3H were established primarily using computational methods. Linear free-energy relationships (LFERs) derived by correlating thermodynamic and kinetic hydricities indicate that, in general, the rate of hydride transfer increases as the thermodynamic driving force for the reaction increases. Kinetic isotope effects range from inverse for hydride transfer reactions with a small driving force to normal for reactions with a large driving force. Hammett analysis indicates that hydride transfer reactions with greater thermodynamic driving force are less sensitive to changes in the electronic properties of the metal hydride, presumably because there is less buildup of charge in the increasingly early transition state. Bronsted α values were obtained for a range of hydride transfer reactions and along with DFT calculations suggest the reactions are concerted, which enables the use of Marcus theory to analyze hydride transfer reactions involving transition metal hydrides. It is notable, however, that even slight perturbations in the steric properties of the Re hydride or the hydride acceptor result in large deviations in the predicted rate of hydride transfer based on thermodynamic driving forces. This indicates that thermodynamic considerations alone cannot be used to predict the rate of hydride transfer, which has implications for catalyst design.


Subject(s)
Rhenium , 2,2'-Dipyridyl , Carbon Dioxide , Kinetics , Thermodynamics
7.
J Phys Chem A ; 126(7): 1033-1061, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35143188

ABSTRACT

The effects of 5'-(para-R-phenylene)vinylene (PV) substituents on the emission properties of 2-(2'-hydroxyphenyl)benzoxazole (HBO) are analyzed using steady-state and time-resolved absorption and emission spectroscopies in addition to quantum chemical calculations. All members in the series of PVHBOs are capable of excited-state intramolecular proton transfer (ESIPT) with a solvent sensitivity that is typical of a HBO derivative to produce a normal (aka enol) emission and an excited-state tautomer (aka keto) emission. These two emission bands of the neutral dyes are discussed in the current paper. The intermolecular proton transfer, i.e., the deprotonation, of a PVHBO results in the third band of the triple emission, which is described in the succeeding paper. The placement of an electron-withdrawing substituent R on the PVHBO scaffold increases the intensity of the keto emission relative to the enol emission in hydrogen-bonding solvents. The R substituents do not significantly alter the wavelengths of the enol and keto emission bands, which are located in the blue and green regions, respectively, of the visible spectrum. The ultrafast time-resolved spectroscopies and quantum chemical calculations offer explanations on how the R group and the solvent affect the enol and keto emission properties (i.e., wavelength, lifetime, fluorescence quantum yield, and relative ratio of their emissions). The key findings include the following: (1) the emission energies of both enol and keto forms are not sensitively dependent on the R substituent and (2) the solvent-engaged enol excited state is quenched more efficiently as the R substituent becomes more electron-withdrawing. A PVHBO acts as a fusion of HBO and stilbenoid that intersect at the hydroxyphenyl moiety. Depending on the solvent and other environmental conditions, PVHBOs may exhibit the ESIPT property of HBO or the substituent-dependent emission of stilbenoid. This paper and the succeeding article provide a photophysical model of PVHBOs to explain the wavelengths and relative abundances of the three emission bands (enol, keto, and anion) that these compounds are able to produce. Judicial selection of the environmental factors may drive the emission of a PVHBO into the spectral regions of blue, green, and, in a couple of cases, orange or red.

8.
J Phys Chem A ; 126(7): 1062-1075, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35143198

ABSTRACT

This paper is the second part of a study on the effects of a substituted 5'-phenylenevinylene (PV) functionality on the emission properties of 2-(2'-hydroxyphenyl)benzoxazole (HBO)─a dye that is known for excited-state intramolecular proton transfer. The topical compounds are referred to as PVHBOs, each of which is a structural fusion of HBO and a 4-hydroxy-4'-R-stilbene fluorophore that occurs at the hydroxyphenyl moiety. Therefore, the resulting fusion fluorophore manifests the properties of one component or the other, as governed by its interactions with the environment. In part I (the preceding paper), PVHBOs are divided into two groups depending on whether the R substituent is electron-donating/neutral (group I) or electron-withdrawing (group II). The difference in absorption and emission properties between groups I and II is explained based on observations from spectroscopic experiments (both steady-state and time-resolved) and quantum chemical calculations. In the current paper, the same set of tools is applied to characterize the photophysical properties of the conjugate bases─that is, the anions─of PVHBOs. The emission energy of the anion of any group I compound, where the R substituent is either electron-donating or neutral, is situated between those of the neutral enol and keto forms. The emission of the anion of any given group II compound, on the other hand, has a lower energy than both the enol and keto emissions. The frontier molecular orbitals (i.e., HOMO, LUMO, and LUMO + 1) of a PVHBO localized on either HBO or stilbenoid are impacted by the substituent R and the solvent/additive differently, which leads to the differences in the optical properties of group I and II PVHBOs in both neutral and anion forms.

9.
Inorg Chem ; 61(4): 2307-2318, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35043634

ABSTRACT

Molybdenum complexes supported by tridentate pincer ligands are exceptional catalysts for dinitrogen fixation using chemical reductants, but little is known about their prospects for electrochemical reduction of dinitrogen. The viability of electrochemical N2 binding and splitting by a molybdenum(III) pincer complex, (pyPNP)MoBr3 (pyPNP = 2,6-bis(tBu2PCH2)-C5H3N)), is established in this work, providing a foundation for a detailed mechanistic study of electrode-driven formation of the nitride complex (pyPNP)Mo(N)Br. Electrochemical kinetic analysis, optical and vibrational spectroelectrochemical monitoring, and computational studies point to two concurrent reaction pathways: In the reaction-diffusion layer near the electrode surface, the molybdenum(III) precursor is reduced by 2e- and generates a bimetallic molybdenum(I) Mo2(µ-N2) species capable of N-N bond scission; and in the bulk solution away from the electrode surface, over-reduced molybdenum(0) species undergo chemical redox reactions via comproportionation to generate the same bimetallic molybdenum(I) species capable of N2 cleavage. The comproportionation reactions reveal the surprising intermediacy of dimolybdenum(0) complex trans,trans-[(pyPNP)Mo(N2)2](µ-N2) in N2 splitting pathways. The same "over-reduced" molybdenum(0) species was also found to cleave N2 upon addition of lutidinium, an acid frequently used in catalytic reduction of dinitrogen.

10.
ACS Omega ; 6(5): 3447-3462, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33585731

ABSTRACT

Many fluorophores that are widely used in analytical biochemistry and in biological microscopy contain a hydroxyaromatic component. One could also find fascinating chemistries of hydroxyaromatic dyes, especially those capable of excited state proton transfer (ESPT) to produce dual emission, in the literature of materials and physical chemistry. The ESPT-capable compounds have attracted interest based on their fundamental intellectual values in molecular photophysics and their potential utilities as light emitters in organic light-emitting diodes (LEDs) or fluorescent sensors. The hydroxyaromatic dyes could undergo either intra- or intermolecular proton transfer in either electronic ground or excited states. Although having long been applied for various purposes, some of their absorption and emission properties have not always been clearly described because of the insufficient attention given to proton transfer equilibria in either the ground or excited state and the challenges in computationally modeling the true emitters of these dyes under any given conditions. In this article, an attempt is made to summarize the spectroscopic properties of a few common hydroxyaromatic dyes that have been studied for both fundamental and practical purposes, with the help from quantum chemical calculations of the absorption and emission energies of these dyes in neutral and anion forms. The goal of this article is to provide readers some clarity in the optical properties of these compounds and the tools to understand and to predict the photon-initiated behaviors of hydroxyaromatic fluorophores.

11.
J Am Chem Soc ; 143(2): 945-954, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33383987

ABSTRACT

The catalytic hydrogenation of carbon dioxide holds immense promise for applications in sustainable fuel synthesis and hydrogen storage. Mechanistic studies that connect thermodynamic parameters with the kinetics of catalysis can provide new understanding and guide predictive design of improved catalysts. Reported here are thermochemical and kinetic analyses of a new pincer-ligated rhenium complex (tBuPOCOP)Re(CO)2 (tBuPOCOP = 2,6-bis(di-tert-butylphosphinito)phenyl) that catalyzes CO2 hydrogenation to formate with faster rates at lower temperatures. Because the catalyst follows the prototypical "outer sphere" hydrogenation mechanism, comprehensive studies of temperature and solvent effects on the H2 splitting and hydride transfer steps are expected to be relevant to many other catalysts. Strikingly large entropy associated with cleavage of H2 results in a strong temperature dependence on the concentration of [(tBuPOCOP)Re(CO)2H]- present during catalysis, which is further impacted by changing the solvent from toluene to tetrahydrofuran to acetonitrile. New methods for determining the hydricity of metal hydrides and formate at temperatures other than 298 K are developed, providing insight into how temperature can influence the favorability of hydride transfer during catalysis. These thermochemical insights guided the selection of conditions for CO2 hydrogenation to formate with high activity (up to 364 h-1 at 1 atm or 3330 h-1 at 20 atm of 1:1 H2:CO2). In cases where hydride transfer is the highest individual kinetic barrier, entropic contributions to outer sphere H2 splitting lead to a unique temperature dependence: catalytic activity increases as temperature decreases in tetrahydrofuran (200-fold increase upon cooling from 50 to 0 °C) and toluene (4-fold increase upon cooling from 100 to 50 °C). Ramifications on catalyst structure-function relationships are discussed, including comparisons between "outer sphere" mechanisms and "metal-ligand cooperation" mechanisms.

12.
Bioeng Transl Med ; 5(3): e10165, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33005736

ABSTRACT

Precise monitoring of specific biomarkers in biological fluids with accurate biodiagnostic sensors is critical for early diagnosis of diseases and subsequent treatment planning. In this work, we demonstrated an innovative biodiagnostic sensor, portable reusable accurate diagnostics with nanostar antennas (PRADA), for multiplexed biomarker detection in small volumes (~50 µl) enabled in a microfluidic platform. Here, PRADA simultaneously detected two biomarkers of myocardial infarction, cardiac troponin I (cTnI), which is well accepted for cardiac disorders, and neuropeptide Y (NPY), which controls cardiac sympathetic drive. In PRADA immunoassay, magnetic beads captured the biomarkers in human serum samples, and gold nanostars (GNSs) "antennas" labeled with peptide biorecognition elements and Raman tags detected the biomarkers via surface-enhanced Raman spectroscopy (SERS). The peptide-conjugated GNS-SERS barcodes were leveraged to achieve high sensitivity, with a limit of detection (LOD) of 0.0055 ng/ml of cTnI, and a LOD of 0.12 ng/ml of NPY comparable with commercially available test kits. The innovation of PRADA was also in the regeneration and reuse of the same sensor chip for ~14 cycles. We validated PRADA by testing cTnI in 11 de-identified cardiac patient samples of various demographics within a 95% confidence interval and high precision profile. We envision low-cost PRADA will have tremendous translational impact and be amenable to resource-limited settings for accurate treatment planning in patients.

13.
J Am Chem Soc ; 141(51): 20198-20208, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31751134

ABSTRACT

The direct scission of the triple bond of dinitrogen (N2) by a metal complex is an alluring entry point into the transformation of N2 to ammonia (NH3) in molecular catalysis. Reported herein is a pincer-ligated rhenium system that reduces N2 to NH3 via a well-defined reaction sequence involving reductive formation of a bridging N2 complex, photolytic N2 splitting, and proton-coupled electron transfer (PCET) reduction of the metal-nitride bond. The new complex (PONOP)ReCl3 (PONOP = 2,6-bis(diisopropylphosphinito)pyridine) is reduced under N2 to afford the trans,trans-isomer of the bimetallic complex [(PONOP)ReCl2]2(µ-N2) as an isolable kinetic product that isomerizes sequentially upon heating into the trans,cis and cis,cis isomers. All isomers are inert to thermal N2 scission, and the trans,trans-isomer is also inert to photolytic N2 cleavage. In striking contrast, illumination of the trans,cis and cis,cis-isomers with blue light (405 nm) affords the octahedral nitride complex cis-(PONOP)Re(N)Cl2 in 47% spectroscopic yield and 11% quantum yield. The photon energy drives an N2 splitting reaction that is thermodynamically unfavorable under standard conditions, producing a nitrido complex that reacts with SmI2/H2O to produce a rhenium tetrahydride complex (38% yield) and furnish ammonia in 74% yield.

14.
J Phys Chem A ; 122(47): 9209-9223, 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30411891

ABSTRACT

Excitation-dependent multiple fluorescence of a 2-(2'-hydroxyphenyl)benzoxazole (HBO) derivative (1) is described. Compound 1 contains the structure of a charge-transfer (CT) 4-hydroxyphenylvinylenebipy fluorophore and an excited-state intramolecular proton transfer capable (ESIPT-capable) HBO component that intersect at the hydroxyphenyl moiety. Therefore, both CT and ESIPT pathways, while spatially mostly separated, are available to the excited state of 1. The ESIPT process offers two emissive isomeric structures (enol and keto) of 1 in the excited state, while the susceptibility of 1 to a base adds another option to tune the composite emission color. In addition to the ground-state acid-base equilibrium that can be harnessed for the control of emission color by excitation energy, compound 1 exhibits excitation-dependent emission that is attributed to solvent-affected ground-state structural changes. Therefore, depending on the medium and excitation wavelength, the emission from the enol, keto, and anion forms could occur simultaneously, which are in the color ranges of blue, green, and orange/red, respectively. A composite color of white with CIE coordinates of (0.33, 0.33) can be materialized through judicious choices of medium and excitation wavelength.

15.
Chem Sci ; 9(3): 586-593, 2018 Jan 21.
Article in English | MEDLINE | ID: mdl-29629122

ABSTRACT

Single crystalline zero-dimensional (0D) organic-inorganic hybrid materials with perfect host-guest structures have been developed as a new generation of highly efficient light emitters. Here we report a series of lead-free organic metal halide hybrids with a 0D structure, (C4N2H14X)4SnX6 (X = Br, I) and (C9NH20)2SbX5 (X = Cl), in which the individual metal halide octahedra (SnX64-) and quadrangular pyramids (SbX52-) are completely isolated from each other and surrounded by the organic ligands C4N2H14X+ and C9NH20+, respectively. The isolation of the photoactive metal halide species by the wide band gap organic ligands leads to no interaction or electronic band formation between the metal halide species, allowing the bulk materials to exhibit the intrinsic properties of the individual metal halide species. These 0D organic metal halide hybrids can also be considered as perfect host-guest systems, with the metal halide species periodically doped in the wide band gap matrix. Highly luminescent, strongly Stokes shifted broadband emissions with photoluminescence quantum efficiencies (PLQEs) of close to unity were realized, as a result of excited state structural reorganization of the individual metal halide species. Our discovery of highly luminescent single crystalline 0D organic-inorganic hybrid materials as perfect host-guest systems opens up a new paradigm in functional materials design.

16.
J Phys Chem A ; 122(11): 2956-2973, 2018 Mar 22.
Article in English | MEDLINE | ID: mdl-29489363

ABSTRACT

The structural and optical properties of hydroxyphenyl-substituted-1,2,3-triazole molecules ("click" triazoles) are described. "Click" triazoles are prepared from the copper(I)-catalyzed azide-alkyne cycloaddition reactions. The alkyne-derived C4 substituent of a "click" triazole engages in electronic conjugation more effectively with the triazolyl core than the azide-derived N1 substituent. Furthermore, triazolyl group exerts a stronger electron-withdrawing effect on the N1 than the C4 substituent. Therefore, the placement of an electron-donating group at either C4 or N1 position and the presence or the absence of an intramolecular hydrogen bond (HB) have profound influences on the optical properties of these compounds. The reported "click" triazoles have fluorescence quantum yields in the range of 0.1-0.3 and large apparent Stokes shifts (8000-13 000 cm-1) in all tested solvents. Deprotonation of "click" triazoles with a C4 hydroxyphenyl group increases their Stokes shifts; while the opposite (or quenching) occurs to the triazoles with an N1 hydroxyphenyl substituent. For the triazoles that contain intramolecular HBs, neither experimental nor computational results support a model of excited state intramolecular proton transfer (ESIPT). Rather, the excited state internal (or intramolecular) charge transfer (ICT) mechanism is more suitable to explain the fluorescence properties of the hydroxyphenyl-substituted "click" triazoles; specifically, the large Stokes shifts of these compounds.

17.
Inorg Chem ; 57(4): 1964-1975, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29419289

ABSTRACT

A series of ruthenium(II) hydrido dinitrogen complexes supported by pincer ligands in different formal oxidation states have been prepared and characterized. Treating a ruthenium dichloride complex supported by the pincer ligand bis(di-tert-butylphosphinoethyl)amine (H-PNP) with reductant or base generates new five-coordinate cis-hydridodinitrogen ruthenium complexes each containing different forms of the pincer ligand. Further ligand transformations provide access to the first isostructural set of complexes featuring all six different forms of the pincer ligand. The conserved cis-hydridodinitrogen structure facilitates characterization of the π-donor, π-acceptor, and/or σ-donor properties of the ligands and assessment of the impact of ligand-centered multielectron/multiproton changes on N2 activation. Crystallographic studies, infrared spectroscopy, and 15N NMR spectroscopy indicate that N2 remains weakly activated in all cases, providing insight into the donor properties of the different pincer ligand states. Ramifications on applications of (pincer)Ru species in catalysis are considered.

18.
Inorg Chem ; 56(20): 12421-12435, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-28968088

ABSTRACT

A new family of low-coordinate Co complexes supported by three redox-noninnocent tridentate [OCO] pincer-type bis(phenolate) N-heterocyclic carbene (NHC) ligands are described. Combined experimental and computational data suggest that the charge-neutral four-coordinate complexes are best formulated as Co(II) centers bound to closed-shell [OCO]2- dianions, of the general formula [(OCO)CoIIL] (where L is a solvent-derived MeCN or THF). Cyclic voltammograms of the [(OCO)CoIIL] complexes reveal three oxidations accessible at potentials below 1.2 V vs Fc+/Fc, corresponding to generation of formally Co(V) species, but the true physical/spectroscopic oxidation states are much lower. Chemical oxidations afford the mono- and dications of the imidazoline NHC-derived complex, which were examined by computational and magnetic and spectroscopic methods, including single-crystal X-ray diffraction. The metal and ligand oxidation states of the monocationic complex are ambiguous; data are consistent with formulation as either [(SOCO)CoIII(THF)2]+ containing a closed-shell [SOCO]2- diphenolate ligand bound to a S = 1 Co(III) center, or [(SOCO•)CoII(THF)2]+ with a low-spin Co(II) ion ferromagnetically coupled to monoanionic [SOCO•]- containing a single unpaired electron distributed across the [OCO] framework. The dication is best described as [(SOCO0)CoII(THF)3]2+, with a single unpaired electron localized on the d7 Co(II) center and a doubly oxidized, charge-neutral, closed-shell SOCO0 ligand. The combined data provide for the first time unequivocal and structural evidence for [OCO] ligand redox activity. Notably, varying the degree of unsaturation in the NHC backbone shifts the ligand-based oxidation potentials by up to 400 mV. The possible chemical origins of this unexpected shift, along with the potential utility of the [OCO] pincer ligands for base-metal-mediated organometallic coupling catalysis, are discussed.

19.
Water Resour Res ; 53(7): 5209-5219, 2017 07.
Article in English | MEDLINE | ID: mdl-28919651

ABSTRACT

Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long-term experiments on physical-chemical-biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology.

20.
J Am Chem Soc ; 139(15): 5305-5308, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28383261

ABSTRACT

The conversion of metal nitride complexes to ammonia may be essential to dinitrogen fixation. We report a new reduction pathway that utilizes ligating acids and metal-ligand cooperation to effect this conversion without external reductants. Weak acids such as 4-methoxybenzoic acid and 2-pyridone react with nitride complex [(H-PNP)RuN]+ (H-PNP = HN(CH2CH2PtBu2)2) to generate octahedral ammine complexes that are κ2-chelated by the conjugate base. Experimental and computational mechanistic studies reveal the important role of Lewis basic sites proximal to the acidic proton in facilitating protonation of the nitride. The subsequent reduction to ammonia is enabled by intramolecular 2H+/2e- proton-coupled electron transfer from the saturated pincer ligand backbone.

SELECTION OF CITATIONS
SEARCH DETAIL
...