Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1382638, 2024.
Article in English | MEDLINE | ID: mdl-38715601

ABSTRACT

Recovery from respiratory pneumococcal infections generates lung-localized protection against heterotypic bacteria, mediated by resident memory lymphocytes. Optimal protection in mice requires re-exposure to pneumococcus within days of initial infection. Serial surface marker phenotyping of B cell populations in a model of pneumococcal heterotypic immunity revealed that bacterial re-exposure stimulates the immediate accumulation of dynamic and heterogeneous populations of B cells in the lung, and is essential for the establishment of lung resident memory B (BRM) cells. The B cells in the early wave were activated, proliferating locally, and associated with both CD4+ T cells and CXCL13. Antagonist- and antibody-mediated interventions were implemented during this early timeframe to demonstrate that lymphocyte recirculation, CD4+ cells, and CD40 ligand (CD40L) signaling were all needed for lung BRM cell establishment, whereas CXCL13 signaling was not. While most prominent as aggregates in the loose connective tissue of bronchovascular bundles, morphometry and live lung imaging analyses showed that lung BRM cells were equally numerous as single cells dispersed throughout the alveolar septae. We propose that CD40L signaling from antigen-stimulated CD4+ T cells in the infected lung is critical to establishment of local BRM cells, which subsequently protect the airways and parenchyma against future potential infections.


Subject(s)
CD4-Positive T-Lymphocytes , CD40 Ligand , Lung , Memory B Cells , Streptococcus pneumoniae , Animals , Mice , CD4-Positive T-Lymphocytes/immunology , CD40 Ligand/metabolism , CD40 Ligand/immunology , Chemokine CXCL13/metabolism , Disease Models, Animal , Immunologic Memory , Lung/immunology , Memory B Cells/immunology , Memory B Cells/metabolism , Mice, Inbred C57BL , Pneumococcal Infections/immunology , Signal Transduction , Streptococcus pneumoniae/immunology
2.
Cell Rep ; 43(4): 114114, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625791

ABSTRACT

Patients afflicted with Stimulator of interferon gene (STING) gain-of-function mutations frequently present with debilitating interstitial lung disease (ILD) that is recapitulated in mice expressing the STINGV154M mutation (VM). Prior radiation chimera studies revealed an unexpected and critical role for non-hematopoietic cells in initiating ILD. To identify STING-expressing non-hematopoietic cell types required for the development of ILD, we use a conditional knockin (CKI) model and direct expression of the VM allele to hematopoietic cells, fibroblasts, epithelial cells, or endothelial cells. Only endothelial cell-targeted VM expression results in enhanced recruitment of immune cells to the lung associated with elevated chemokine expression and the formation of bronchus-associated lymphoid tissue, as seen in the parental VM strain. These findings reveal the importance of endothelial cells as instigators of STING-driven lung disease and suggest that therapeutic targeting of STING inhibitors to endothelial cells could potentially mitigate inflammation in the lungs of STING-associated vasculopathy with onset in infancy (SAVI) patients or patients afflicted with other ILD-related disorders.


Subject(s)
Endothelial Cells , Gain of Function Mutation , Lung , Membrane Proteins , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Mice , Lung/pathology , Lung/metabolism , Lymphocytes/metabolism , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/metabolism , Mice, Inbred C57BL , Humans
3.
Mucosal Immunol ; 16(5): 699-710, 2023 10.
Article in English | MEDLINE | ID: mdl-37604254

ABSTRACT

Streptococcus pneumoniae is the most common etiology of bacterial pneumonia, one of the leading causes of death in children and the elderly worldwide. During non-lethal infections with S. pneumoniae, lymphocytes accumulate in the lungs and protect against reinfection with serotype-mismatched strains. Cluster of differentiation CD4+ resident memory T (TRM) cells are known to be crucial for this protection, but the diversity of lung CD4+ TRM cells has yet to be fully delineated. We aimed to identify unique subsets and their contributions to lung immunity. After recovery from pneumococcal infections, we identified a distinct subset of CD4+ T cells defined by the phenotype CD11ahiCD69+GL7+ in mouse lungs. Phenotypic analyses for markers of lymphocyte memory and residence demonstrated that GL7+ T cells are a subset of CD4+ TRM cells. Functional studies revealed that unlike GL7- TRM subsets that were mostly (RAR-related Orphan Receptor gamma T) RORγT+, GL7+ TRM cells exhibited higher levels of (T-box expressed in T cells) T-bet and Gata-3, corresponding with increased synthesis of interferon-γ, interleukin-13, and interleukin-5, inherent to both T helper 1 (TH1) and TH2 functions. Thus, we propose that these cells provide novel contributions during pneumococcal pneumonia, serving as important determinants of lung immunity.


Subject(s)
Lung , Streptococcus pneumoniae , Aged , Animals , Child , Humans , Mice , CD4-Positive T-Lymphocytes , Immunologic Memory , Ligands , T-Lymphocytes
4.
bioRxiv ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37547024

ABSTRACT

Patients afflicted with STING gain-of-function mutations frequently present with debilitating interstitial lung disease ( ILD ) that is recapitulated in mice expressing the STING V154M mutation ( VM ). Prior radiation chimera studies revealed an unexpected and critical role for non-hematopoietic cells in the initiation of ILD. To identify STING-expressing non-hematopoietic cell types relevant to ILD, we generated a conditional knock-in ( CKI ) model in which expression of the VM allele was directed to hematopoietic cells, fibroblasts, epithelial cells, or endothelial cells. Only endothelial cell-targeted expression of the mutant allele resulted in the recruitment of immune cells to the lung and the formation of bronchus-associated lymphoid tissue, as seen in the parental VM strain. These findings reveal the importance of endothelial cells as instigators of STING-driven lung disease and suggest that therapeutic targeting of STING inhibitors to endothelial cells could potentially mitigate inflammation in the lungs of SAVI patients or patients afflicted with other ILD-related disorders. Summary: Patients with STING gain-of-function (GOF) mutations develop life-threatening lung autoinflammation. In this study, Gao et al. utilize a mouse model of conditional STING GOF to demonstrate a role for endothelial STING GOF in initiating immune cell recruitment into lung tissues of SAVI mice.

5.
JCI Insight ; 7(23)2022 12 08.
Article in English | MEDLINE | ID: mdl-36264633

ABSTRACT

Identifying host factors that contribute to pneumonia incidence and severity are of utmost importance to guiding the development of more effective therapies. Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1, encoded by OLR1) is a scavenger receptor known to promote vascular injury and inflammation, but whether and how LOX-1 functions in the lung are unknown. Here, we provide evidence of substantial accumulation of LOX-1 in the lungs of patients with acute respiratory distress syndrome and in mice with pneumonia. Unlike previously described injurious contributions of LOX-1, we found that LOX-1 is uniquely protective in the pulmonary airspaces, limiting proteinaceous edema and inflammation. We also identified alveolar macrophages and recruited neutrophils as 2 prominent sites of LOX-1 expression in the lungs, whereby macrophages are capable of further induction during pneumonia and neutrophils exhibit a rapid, but heterogenous, elevation of LOX-1 in the infected lung. Blockade of LOX-1 led to dysregulated immune signaling in alveolar macrophages, marked by alterations in activation markers and a concomitant elevation of inflammatory gene networks. However, bone marrow chimeras also suggested a prominent role for neutrophils in LOX-1-mediated lung protection, further supported by LOX-1+ neutrophils exhibiting transcriptional changes consistent with reparative processes. Taken together, this work establishes LOX-1 as a tissue-protective factor in the lungs during pneumonia, possibly mediated by its influence on immune signaling in alveolar macrophages and LOX-1+ airspace neutrophils.


Subject(s)
Lung Injury , Pneumonia , Scavenger Receptors, Class E , Animals , Mice , Scavenger Receptors, Class E/genetics
6.
J Immunol ; 208(8): 2008-2018, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35354611

ABSTRACT

IL-27 is a heterodimeric IL-12 family cytokine formed by noncovalent association of the promiscuous EBI3 subunit and selective p28 subunit. IL-27 is produced by mononuclear phagocytes and unfolds pleiotropic immune-modulatory functions through ligation to IL-27 receptor α (IL-27RA). Although IL-27 is known to contribute to immunity and to limit inflammation after various infections, its relevance for host defense against multicellular parasites is still poorly defined. Here, we investigated the role of IL-27 during infection with the soil-transmitted hookworm, Nippostrongylus brasiliensis, in its early host intrapulmonary life cycle. IL-27(p28) was detectable in bronchoalveolar lavage fluid of C57BL/6J wild-type mice on day 1 after s.c. inoculation. IL-27RA expression was most abundant on lung-invading γδ T cells. Il27ra-/- mice showed increased lung parasite burden together with aggravated pulmonary hemorrhage and higher alveolar total protein leakage as a surrogate for epithelial-vascular barrier disruption. Conversely, injections of recombinant mouse (rm)IL-27 into wild-type mice reduced lung injury and parasite burden. In multiplex screens, higher airway accumulations of IL-6, TNF-α, and MCP-3 (CCL7) were observed in Il27ra-/- mice, whereas rmIL-27 treatment showed a reciprocal effect. Importantly, γδ T cell numbers in airways were enhanced by endogenous or administered IL-27. Further analysis revealed a direct antihelminthic function of IL-27 on γδ T cells as adoptive intratracheal transfer of rmIL-27-treated γδ T cells during primary N. brasiliensis lung infection conferred protection in mice. In summary, this report demonstrates protective functions of IL-27 to control the early lung larval stage of hookworm infection.


Subject(s)
Hookworm Infections , Interleukin-27 , Animals , Interleukins , Lung , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, T-Cell, gamma-delta
7.
Am J Physiol Lung Cell Mol Physiol ; 322(4): L550-L563, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35137631

ABSTRACT

During bacterial pneumonia, alveolar epithelial cells are critical for maintaining gas exchange and providing antimicrobial as well as pro-immune properties. We previously demonstrated that leukemia inhibitory factor (LIF), an IL-6 family cytokine, is produced by type II alveolar epithelial cells (ATII) and is critical for tissue protection during bacterial pneumonia. However, the target cells and mechanisms of LIF-mediated protection remain unknown. Here, we demonstrate that antibody-induced LIF blockade remodels the lung epithelial transcriptome in association with increased apoptosis. Based on these data, we performed pneumonia studies using a novel mouse model in which LIFR (the unique receptor for LIF) is absent in lung epithelium. Although LIFR is expressed on the surface of epithelial cells, its absence only minimally contributed to tissue protection during pneumonia. Single-cell RNA-sequencing (scRNAseq) was conducted to identify adult murine lung cell types most prominently expressing Lifr, revealing endothelial cells, mesenchymal cells, and ATIIs as major sources of Lifr. Sequencing data indicated that ATII cells were significantly impacted by pneumonia, with additional differences observed in response to LIF neutralization, including but not limited to gene programs related to cell death, injury, and inflammation. Overall, our data suggest that LIF signaling on epithelial cells alters responses in this cell type during pneumonia. However, our results also suggest separate and perhaps more prominent roles of LIFR in other cell types, such as endothelial cells or mesenchymal cells, which provide grounds for future investigation.


Subject(s)
Lung Injury , Pneumonia, Bacterial , Animals , Apoptosis , Endothelial Cells/metabolism , Leukemia Inhibitory Factor/genetics , Mice , Signal Transduction
8.
JCI Insight ; 7(5)2022 03 08.
Article in English | MEDLINE | ID: mdl-35133985

ABSTRACT

Recovery from pneumococcal pneumonia remodels the pool of alveolar macrophages so that they exhibit new surface marker profiles, transcriptomes, metabolomes, and responses to infection. Mechanisms mediating alveolar macrophage phenotypes after pneumococcal pneumonia have not been delineated. IFN-γ and its receptor on alveolar macrophages were essential for certain, but not all, aspects of the remodeled alveolar macrophage phenotype. IFN-γ was produced by CD4+ T cells plus other cells, and CD4+ cell depletion did not prevent alveolar macrophage remodeling. In mice infected or recovering from pneumococcus, monocytes were recruited to the lungs, and the monocyte-derived macrophages developed characteristics of alveolar macrophages. CCR2 mediated the early monocyte recruitment but was not essential to the development of the remodeled alveolar macrophage phenotype. Lineage tracing demonstrated that recovery from pneumococcal pneumonias converted the pool of alveolar macrophages from being primarily of embryonic origin to being primarily of adult hematopoietic stem cell origin. Alveolar macrophages of either origin demonstrated similar remodeled phenotypes, suggesting that ontogeny did not dictate phenotype. Our data reveal that the remodeled alveolar macrophage phenotype in lungs recovered from pneumococcal pneumonia results from a combination of new recruitment plus training of both the original cells and the new recruits.


Subject(s)
Macrophages, Alveolar , Pneumonia, Pneumococcal , Animals , Lung , Macrophages , Mice , Monocytes
9.
Infect Immun ; 90(3): e0049121, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35130455

ABSTRACT

Neutrophils are capable of extruding neutrophil extracellular traps (NETs), a network of granule proteins and chromatin material, upon activation. NETs provide defense against extracellular microbes, but histones in NETs can also induce cytotoxicity and activate inflammatory responses. The relevance of NETs to bacterial pneumonias is beginning to be defined. In the present study, we found that the extracellular concentration of citrullinated histone H3, a component of NETs, was elevated in bronchoalveolar lavage fluid recovered from mice with diverse bacterial pneumonias and correlated with neutrophil infiltration and cell death in the lungs as well as levels of H4. Because the histone H4 component of NETs is sufficient to stimulate inflammation, we tested its effects in the air spaces of the lungs. Recombinant histone H4 in the noninflamed lung produced only modest effects, but in the setting of neutrophilic inflammation, H4 substantially increased pulmonary neutrophils, NETs, necrosis, and edema. However, blockade of histone H4 with a monoclonal antibody during pneumonia did not significantly alter measures of lung damage. Taken together, these results implicate NETs and extracellular histone H4 in exacerbating the lung injury resulting from bacterial pneumonia.


Subject(s)
Extracellular Traps , Pneumonia, Bacterial , Animals , Extracellular Traps/metabolism , Histones/metabolism , Inflammation/metabolism , Mice , Neutrophils , Pneumonia, Bacterial/metabolism
10.
Nat Commun ; 12(1): 5834, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34611166

ABSTRACT

Barrier tissues are populated by functionally plastic CD4+ resident memory T (TRM) cells. Whether the barrier epithelium regulates CD4+ TRM cell locations, plasticity and activities remains unclear. Here we report that lung epithelial cells, including distinct surfactant protein C (SPC)lowMHChigh epithelial cells, function as anatomically-segregated and temporally-dynamic antigen presenting cells. In vivo ablation of lung epithelial MHC-II results in altered localization of CD4+ TRM cells. Recurrent encounters with cognate antigen in the absence of epithelial MHC-II leads CD4+ TRM cells to co-express several classically antagonistic lineage-defining transcription factors, changes their cytokine profiles, and results in dysregulated barrier immunity. In addition, lung epithelial MHC-II is needed for surface expression of PD-L1, which engages its ligand PD-1 to constrain lung CD4+ TRM cell phenotypes. Thus, we establish epithelial antigen presentation as a critical regulator of CD4+ TRM cell function and identify epithelial-CD4+ TRM cell immune interactions as core elements of barrier immunity.


Subject(s)
Antigen Presentation/physiology , Epithelial Cells/metabolism , Lung/cytology , Animals , CD4-Positive T-Lymphocytes/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Leukocytes/cytology , Leukocytes/metabolism , Lung/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Real-Time Polymerase Chain Reaction
11.
J Immunol ; 207(7): 1891-1902, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34470857

ABSTRACT

Systemic duress, such as that elicited by sepsis, burns, or trauma, predisposes patients to secondary pneumonia, demanding better understanding of host pathways influencing this deleterious connection. These pre-existing circumstances are capable of triggering the hepatic acute-phase response (APR), which we previously demonstrated is essential for limiting susceptibility to secondary lung infections. To identify potential mechanisms underlying protection afforded by the lung-liver axis, our studies aimed to evaluate liver-dependent lung reprogramming when a systemic inflammatory challenge precedes pneumonia. Wild-type mice and APR-deficient littermate mice with hepatocyte-specific deletion of STAT3 (hepSTAT3-/-), a transcription factor necessary for full APR initiation, were challenged i.p. with LPS to induce endotoxemia. After 18 h, pneumonia was induced by intratracheal Escherichia coli instillation. Endotoxemia elicited significant transcriptional alterations in the lungs of wild-type and hepSTAT3-/- mice, with nearly 2000 differentially expressed genes between genotypes. The gene signatures revealed exaggerated immune activity in the lungs of hepSTAT3-/- mice, which were compromised in their capacity to launch additional cytokine responses to secondary infection. Proteomics revealed substantial liver-dependent modifications in the airspaces of pneumonic mice, implicating a network of dispatched liver-derived mediators influencing lung homeostasis. These results indicate that after systemic inflammation, liver acute-phase changes dramatically remodel the lungs, resulting in a modified landscape for any stimuli encountered thereafter. Based on the established vulnerability of hepSTAT3-/- mice to secondary lung infections, we believe that intact liver function is critical for maintaining the immunological responsiveness of the lungs.


Subject(s)
Acute-Phase Reaction/immunology , Coinfection/immunology , Liver/metabolism , Lung/pathology , STAT3 Transcription Factor/metabolism , Airway Remodeling , Animals , Cells, Cultured , Endotoxemia , Inflammation , Lipopolysaccharides/metabolism , Liver/pathology , Mice , Mice, Knockout , Proteomics , STAT3 Transcription Factor/genetics , Transcriptome
12.
J Clin Invest ; 131(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-34060477

ABSTRACT

Lung-resident memory B cells (BRM cells) are elicited after influenza infections of mice, but connections to other pathogens and hosts - as well as their functional significance - have yet to be determined. We postulate that BRM cells are core components of lung immunity. To test this, we examined whether lung BRM cells are elicited by the respiratory pathogen pneumococcus, are present in humans, and are important in pneumonia defense. Lungs of mice that had recovered from pneumococcal infections did not contain organized tertiary lymphoid organs, but did have plasma cells and noncirculating memory B cells. The latter expressed distinctive surface markers (including CD69, PD-L2, CD80, and CD73) and were poised to secrete antibodies upon stimulation. Human lungs also contained B cells with a resident memory phenotype. In mice recovered from pneumococcal pneumonia, depletion of PD-L2+ B cells, including lung BRM cells, diminished bacterial clearance and the level of pneumococcus-reactive antibodies in the lung. These data define lung BRM cells as a common feature of pathogen-experienced lungs and provide direct evidence of a role for these cells in pulmonary antibacterial immunity.


Subject(s)
B-Lymphocytes/immunology , Immunologic Memory , Lung/immunology , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/prevention & control , Streptococcus pneumoniae/immunology , Animals , Antigens, Differentiation/immunology , B-Lymphocytes/pathology , Humans , Lung/microbiology , Lung/pathology , Mice , Mice, Transgenic , Pneumonia, Pneumococcal/microbiology , Pneumonia, Pneumococcal/pathology
13.
Infect Immun ; 89(4)2021 03 17.
Article in English | MEDLINE | ID: mdl-33526570

ABSTRACT

Pneumonia is a major public health concern, causing significant morbidity and mortality annually despite the broad use of antimicrobial agents. Underlying many of the severe sequelae of acute lung infections is dysfunction of the immune response, which remains incompletely understood yet is an attractive target of adjunct therapy in pneumonia. Here, we investigate the role of oncostatin M (OSM), a pleiotropic cytokine of the interleukin-6 (IL-6) family, and how its signaling modulates multiple innate immune pathways during pneumonia. Previously, we showed that OSM is necessary for neutrophil recruitment to the lungs during pneumonia by stimulating STAT3-driven CXCL5 expression. In this study, transcriptional profiling of whole-lung pneumonia with OSM neutralization revealed 241 differentially expressed genes following only 6 h of infection. Many downregulated genes are associated with STAT1, STAT3, and interferon signaling, suggesting these pathways are induced by OSM early in pneumonia. Interestingly, STAT1 and STAT3 activation was subsequently upregulated with OSM neutralization by 24 h, suggesting that OSM interruption dysregulates these central signaling pathways. When we investigated the source of OSM in pneumonia, neutrophils and, to a lesser extent, macrophages appear to be primary sources, suggesting a positive feedback loop of OSM production by neutrophils. From these studies, we conclude that OSM produced by recruited neutrophils tunes early innate immune signaling pathways, improving pneumonia outcomes.


Subject(s)
Neutrophils/immunology , Neutrophils/metabolism , Oncostatin M/metabolism , Pneumonia/etiology , Pneumonia/metabolism , Signal Transduction , Animals , Biomarkers , Cell Survival/genetics , Cell Survival/immunology , Gene Expression Regulation , Host-Pathogen Interactions/immunology , Immunity, Innate , Lung/immunology , Lung/metabolism , Lung/pathology , Macrophages/immunology , Macrophages/metabolism , Mice , Pneumonia/pathology
14.
Front Immunol ; 11: 554, 2020.
Article in English | MEDLINE | ID: mdl-32300347

ABSTRACT

Cyclic di-AMP (c-di-AMP) is an important signaling molecule for pneumococci, and as a uniquely prokaryotic product it can be recognized by mammalian cells as a danger signal that triggers innate immunity. Roles of c-di-AMP in directing host responses during pneumococcal infection are only beginning to be defined. We hypothesized that pneumococci with defective c-di-AMP catabolism due to phosphodiesterase deletions could illuminate roles of c-di-AMP in mediating host responses to pneumococcal infection. Pneumococci deficient in phosphodiesterase 2 (Pde2) stimulated a rapid induction of interferon ß (IFNß) expression that was exaggerated in comparison to that induced by wild type (WT) bacteria or bacteria deficient in phosphodiesterase 1. This IFNß burst was elicited in mouse and human macrophage-like cell lines as well as in primary alveolar macrophages collected from mice with pneumococcal pneumonia. Macrophage hyperactivation by Pde2-deficient pneumococci led to rapid cell death. STING and cGAS were essential for the excessive IFNß induction, which also required phagocytosis of bacteria and triggered the phosphorylation of IRF3 and IRF7 transcription factors. The select effects of Pde2 deletion were products of a unique role of this enzyme in c-di-AMP catabolism when pneumococci were grown on solid substrate conditions designed to enhance virulence. Because pneumococci with elevated c-di-AMP drive aberrant innate immune responses from macrophages involving hyperactivation of STING, excessive IFNß expression, and rapid cytotoxicity, we surmise that c-di-AMP is pivotal for directing innate immunity and host-pathogen interactions during pneumococcal pneumonia.


Subject(s)
Bacterial Proteins/immunology , Cyclic Nucleotide Phosphodiesterases, Type 2/immunology , Dinucleoside Phosphates/immunology , Immunity, Innate/immunology , Macrophages/immunology , Streptococcus pneumoniae/immunology , Animals , Bacterial Proteins/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Dinucleoside Phosphates/metabolism , Host-Pathogen Interactions/immunology , Humans , Mice , Mice, Inbred C57BL , Pneumonia, Pneumococcal/immunology , RAW 264.7 Cells
15.
JCI Insight ; 5(4)2020 02 27.
Article in English | MEDLINE | ID: mdl-31990682

ABSTRACT

Community-acquired pneumonia is a widespread disease with significant morbidity and mortality. Alveolar macrophages are tissue-resident lung cells that play a crucial role in innate immunity against bacteria that cause pneumonia. We hypothesized that alveolar macrophages display adaptive characteristics after resolution of bacterial pneumonia. We studied mice 1 to 6 months after self-limiting lung infections with Streptococcus pneumoniae, the most common cause of bacterial pneumonia. Alveolar macrophages, but not other myeloid cells, recovered from the lung showed long-term modifications of their surface marker phenotype. The remodeling of alveolar macrophages was (a) long-lasting (still observed 6 months after infection), (b) regionally localized (observed only in the affected lobe after lobar pneumonia), and (c) associated with macrophage-dependent enhanced protection against another pneumococcal serotype. Metabolomic and transcriptomic profiling revealed that alveolar macrophages of mice that recovered from pneumonia had new baseline activities and altered responses to infection that better resembled those of adult humans. The enhanced lung protection after mild and self-limiting bacterial respiratory infections includes a profound remodeling of the alveolar macrophage pool that is long-lasting; compartmentalized; and manifest across surface receptors, metabolites, and both resting and stimulated transcriptomes.


Subject(s)
Macrophages, Alveolar/immunology , Pneumonia, Pneumococcal/immunology , Animals , Cell Differentiation , Disease Models, Animal , Immunity, Innate , Lung/immunology , Mice , Myeloid Cells/cytology , Myeloid Cells/immunology
16.
Mucosal Immunol ; 13(2): 334-343, 2020 03.
Article in English | MEDLINE | ID: mdl-31748706

ABSTRACT

Previous pneumococcal experience establishes lung-resident IL-17A-producing CD4+ memory TRM cells that accelerate neutrophil recruitment against heterotypic pneumococci. Herein, we unravel a novel crosstalk between CD4+ TRM cells and lung epithelial cells underlying this protective immunity. Depletion of CD4+ cells in pneumococcus-experienced mice diminished CXCL5 (but not CXCL1 or CXCL2) and downstream neutrophil accumulation in the lungs. Epithelial cells from experienced lungs exhibited elevated mRNA for CXCL5 but not other epithelial products such as GM-CSF or CCL20, suggesting a skewing by CD4+ TRM cells. Genome-wide expression analyses revealed a significant remodeling of the epithelial transcriptome of infected lungs due to infection history, ~80% of which was CD4+ cell-dependent. The CD4+ TRM cell product IL-17A stabilized CXCL5 but not GM-CSF or CCL20 mRNA in cultured lung epithelial cells, implicating posttranscriptional regulation as a mechanism for altered epithelial responses. These results suggest that epithelial cells in experienced lungs are effectively different, owing to their communication with TRM cells. Our study highlights the role of tissue-resident adaptive immune cells in fine-tuning epithelial functions to hasten innate immune responses and optimize defense in experienced lungs, a concept that may apply broadly to mucosal immunology.


Subject(s)
Lung/immunology , Neutrophils/immunology , Pneumonia, Pneumococcal/immunology , Respiratory Mucosa/physiology , Streptococcus pneumoniae/physiology , Th17 Cells/immunology , Airway Remodeling , Animals , Cell Communication , Chemokine CXCL5/genetics , Chemokine CXCL5/metabolism , Gene Expression Regulation , Humans , Immune System Diseases , Immunity, Innate , Immunologic Memory , Leukocyte Disorders , Mice , Mice, Inbred C57BL , Mice, Transgenic
17.
PLoS One ; 14(8): e0221029, 2019.
Article in English | MEDLINE | ID: mdl-31415618

ABSTRACT

Interleukin-11 (IL-11) is an interleukin-6 (IL-6) family cytokine shown to play a protective role in acute inflammatory settings including systemic infection. In this study we addressed the role of IL-11 in acute bacterial pneumonia using a mouse model of E. coli pneumonia. Compared with other related cytokines, IL-11 protein was maintained at high levels in the lung at baseline, with only mild alterations in whole lung and BALF levels during acute infection. The primary source of IL-11 in the lung was the epithelium, but steady state production was not dependent on the inflammatory transcription factor nuclear factor kappa B in cells of either myeloid or epithelial lineage. Blockade of IL-11 with neutralizing antibodies resulted in a mild but significant decrease in neutrophil recruitment and increase in pulmonary edema during pneumonia, without detectable alterations in bacterial clearance. Exogenous IL-11 administration, however, had no effect at baseline or during infection. Overall, we conclude that maintenance of lung IL-11 concentrations may influence acute pulmonary inflammation during infection, albeit modestly.


Subject(s)
Interleukin-11/immunology , Neutrophil Infiltration/immunology , Neutrophils/immunology , Pneumonia, Bacterial/immunology , Pulmonary Edema/immunology , Acute Disease , Animals , Antibodies, Neutralizing/pharmacology , Interleukin-11/antagonists & inhibitors , Interleukin-11/genetics , Mice , Mice, Knockout , Neutrophil Infiltration/drug effects , Neutrophils/pathology , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/genetics , Pneumonia, Bacterial/pathology , Pulmonary Edema/drug therapy , Pulmonary Edema/genetics , Pulmonary Edema/pathology
18.
Infect Immun ; 87(8)2019 08.
Article in English | MEDLINE | ID: mdl-31160364

ABSTRACT

Pneumonia and sepsis are distinct but integrally linked public health concerns. The hepatic acute-phase response (APR), which is largely dependent on transcription factors NF-κB RelA and STAT3, is a hallmark of these pathologies and other injurious conditions. Inactivation of the APR can promote liver injury, a frequently observed organ dysfunction during sepsis. However, whether or how the acute-phase changes promote liver tissue resilience during infections is unclear. To determine the hepatoprotective role of the hepatic APR, we utilized mice bearing hepatocyte-specific deletions of either RelA or STAT3. Mice were challenged intratracheally (i.t.), intravenously (i.v.), or intraperitoneally (i.p.) with Escherichia coli, Klebsiella pneumoniae, Streptococcus pneumoniae, lipopolysaccharide (LPS), or alpha-galactosylceramide (αGalCer) to induce pneumonia, sepsis, or NKT cell activation. Liver injury was observed in RelA-null (hepRelAΔ/Δ) mice but not STAT3-null (hepSTAT3Δ/Δ) mice during pneumonia. The absence of RelA resulted in hepatotoxicity across several models of pneumonia, sepsis, and NKT cell activation. Injury was associated with increased levels of activated caspase-3 and -8 and substantial alteration of the hepatic transcriptome. Hepatotoxicity in the absence of RelA could be reversed by neutralization of tumor necrosis factor alpha (TNF-α). These results indicate the requirement of RelA-dependent inducible hepatoprotection during pneumonia and sepsis. Further, the results demonstrate that RelA-dependent gene programs are critical for maintaining liver homeostasis against TNF-α-driven immunotoxicity.


Subject(s)
Liver/pathology , Pneumonia/pathology , Sepsis/pathology , Transcription Factor RelA/physiology , Acute-Phase Reaction , Animals , Apoptosis , Chemokine CCL2/physiology , Kupffer Cells/physiology , Mice , Mice, Inbred C57BL , Natural Killer T-Cells/immunology , STAT3 Transcription Factor/physiology , Tumor Necrosis Factor-alpha/physiology
19.
Am J Respir Crit Care Med ; 198(10): 1246-1248, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30063845
20.
Physiol Rev ; 98(3): 1417-1464, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29767563

ABSTRACT

Pneumonia is a type of acute lower respiratory infection that is common and severe. The outcome of lower respiratory infection is determined by the degrees to which immunity is protective and inflammation is damaging. Intercellular and interorgan signaling networks coordinate these actions to fight infection and protect the tissue. Cells residing in the lung initiate and steer these responses, with additional immunity effectors recruited from the bloodstream. Responses of extrapulmonary tissues, including the liver, bone marrow, and others, are essential to resistance and resilience. Responses in the lung and extrapulmonary organs can also be counterproductive and drive acute and chronic comorbidities after respiratory infection. This review discusses cell-specific and organ-specific roles in the integrated physiological response to acute lung infection, and the mechanisms by which intercellular and interorgan signaling contribute to host defense and healthy respiratory physiology or to acute lung injury, chronic pulmonary disease, and adverse extrapulmonary sequelae. Pneumonia should no longer be perceived as simply an acute infection of the lung. Pneumonia susceptibility reflects ongoing and poorly understood chronic conditions, and pneumonia results in diverse and often persistent deleterious consequences for multiple physiological systems.


Subject(s)
Pneumonia/immunology , Adaptive Immunity , Animals , Disease Susceptibility , Host-Pathogen Interactions , Humans , Immunity, Innate , Microbiota , Pneumonia/complications , Pneumonia/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...