Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Microbiol ; 116: 104357, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689417

ABSTRACT

Kombucha is a fermented beverage derived from a sweetened tea fermentation inoculated with a bacteria-yeast consortium referred to as Symbiotic Culture of Bacteria and Yeast (SCOBY). Different SCOBY cultures can impact the beverage's quality and make the whole process highly variable. Adding Saccharomyces yeast cultures to the fermentation process can avoid stalled fermentations, providing a reproducible beverage. Here, we explored using different Saccharomyces eubayanus strains together with SCOBY in the context of kombucha fermentation. Our results show that yeast x SCOBY co-cultures exhibited a robust fermentation profile, providing ethanol and acetic acid levels ranging from 0,18-1,81 %v/v and 0,35-1,15 g/L, respectively. The kombucha volatile compound profile of co-cultures was unique, where compounds such as Isopentyl acetate where only found in yeast x SCOBY fermentations. Metabarcoding revealed that the SCOBY composition was also dependent on the S. eubayanus genotype, where besides Saccharomyces, amplicon sequence variants belonging to Brettanomyces and Starmerella were detected. These differences concomitated global changes in transcript levels in S. eubayanus related to the metabolism of organic molecules used in kombucha fermentation. This study highlights the potential for exploring different S. eubayanus strains for kombucha fermentation, and the significant yeast genotype effect in the profile differentiation in this process.


Subject(s)
Brettanomyces , Saccharomyces , Saccharomycetales , Fermentation , Saccharomyces/genetics , Saccharomycetales/genetics
2.
mSystems ; 7(6): e0064022, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36468850

ABSTRACT

The study of natural variation can untap novel alleles with immense value for biotechnological applications. Saccharomyces eubayanus Patagonian isolates exhibit differences in the diauxic shift between glucose and maltose, representing a suitable model to study their natural genetic variation for novel strains for brewing. However, little is known about the genetic variants and chromatin regulators responsible for these differences. Here, we show how genome-wide chromatin accessibility and gene expression differences underlie distinct diauxic shift profiles in S. eubayanus. We identified two strains with a rapid diauxic shift between glucose and maltose (CL467.1 and CBS12357) and one strain with a remarkably low fermentation efficiency and longer lag phase during diauxic shift (QC18). This is associated in the QC18 strain with lower transcriptional activity and chromatin accessibility of specific genes of maltose metabolism and higher expression levels of glucose transporters. These differences are governed by the HAP complex, which differentially regulates gene expression depending on the genetic background. We found in the QC18 strain a contrasting phenotype to those phenotypes described in S. cerevisiae, where hap4Δ, hap5Δ, and cin5Δ knockouts significantly improved the QC18 growth rate in the glucose-maltose shift. The most profound effects were found between CIN5 allelic variants, suggesting that Cin5p could strongly activate a repressor of the diauxic shift in the QC18 strain but not necessarily in the other strains. The differences between strains could originate from the tree host from which the strains were obtained, which might determine the sugar source preference and the brewing potential of the strain. IMPORTANCE The diauxic shift has been studied in budding yeast under laboratory conditions; however, few studies have addressed the diauxic shift between carbon sources under fermentative conditions. Here, we study the transcriptional and chromatin structure differences that explain the natural variation in fermentative capacity and efficiency during diauxic shift of natural isolates of S. eubayanus. Our results show how natural genetic variants in transcription factors impact sugar consumption preferences between strains. These variants have different effects depending on the genetic background, with a contrasting phenotype to those phenotypes previously described in S. cerevisiae. Our study shows how relatively simple genetic/molecular modifications/editing in the lab can facilitate the study of natural variations of microorganisms for the brewing industry.


Subject(s)
Maltose , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Maltose/metabolism , Beer , Glucose , Chromatin
3.
Yeast ; 39(1-2): 128-140, 2022 01.
Article in English | MEDLINE | ID: mdl-34406697

ABSTRACT

The quest for new wild yeasts has increasingly gained attention because of their potential ability to provide unique organoleptic characters to fermented beverages. In this sense, Patagonia offers a wide diversity of ethanol-tolerant yeasts and stands out as a bioprospecting alternative. This study characterized the genetic and phenotypic diversity of yeast isolates obtained from Central Chilean Patagonia and analyzed their fermentation potential under different fermentative conditions. We recovered 125 colonies from Nothofagus spp. bark samples belonging to five yeast species: Saccharomyces eubayanus, Saccharomyces uvarum, Lachancea cidri, Kregervanrija delftensis, and Hanseniaspora valbyensis. High-throughput microcultivation assays demonstrated the extensive phenotypic diversity among Patagonian isolates, where Saccharomyces spp and L. cidri isolates exhibited the most outstanding fitness scores across the conditions tested. Fermentation performance assays under wine, mead, and beer conditions demonstrated the specific potential of the different species for each particular beverage. Saccharomyces spp. were the only isolates able to ferment beer wort. Interestingly, we found that L. cidri is a novel candidate species to ferment wine and mead, exceeding the fermentation capacity of a commercial strain. Unlike commercial strains, we found that L. cidri does not require nutritional supplements for efficient mead fermentation. In addition, L. cidri produces succinic and acetic acids, providing a distinct profile to the final fermented product. This work demonstrates the importance of bioprospecting efforts in Patagonia to isolate novel wild yeast strains with extraordinary biotechnological potential for the fermentation industry.


Subject(s)
Ethanol , Wine , Beer , Fermentation , Wine/analysis , Yeasts
SELECTION OF CITATIONS
SEARCH DETAIL
...