Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36365338

ABSTRACT

The false Rhodes grasses [Leptochloa crinita (Lag.) P.M. Peterson and N.W. Snow and Leptochloa pluriflora (E. Fourn.) P.M. Peterson and N.W. Snow] are considered valuable native forage resources for arid and semiarid rangelands in Argentina and the United States. Effectively using plant materials as forage under aridity conditions requires understanding their resource allocation under those conditions. In the present study, plant functional traits were evaluated in six populations of each false Rhodes grass species from different geographic origin in a humid and an arid region. The evaluation was focused on seed weight, due to the key role of this trait in plant survival. The implication of seed weight in germination under osmotic stress and trade-off relationships between functional traits were also analysed. A fixed ontogenetic variation was found in both species, since populations maintained a stable seed weight across environments. The tolerance to osmotic stress at germination stage was more related to seed weight than to population origin or maternal environment of seeds; heavier-seeded populations produced heavier seedlings instead of a higher number of germinated seeds or higher germination rates. Some traits varied between environments but other traits exhibited a fixed response. Variation patterns among populations were similar within environments and in some cases even for populations from the same geographic origin, revealing a fixed ontogenetic variation; this phenomenon was clearer in L. crinita than in L. pluriflora. Moreover, several different trade-off strategies were detected in both species. These results reinforce the knowledge about the key role of seed weight in survival and performance of seedlings at initial growth stages under arid conditions; however, at advanced stages, other traits would have an important function in growth and development of false Rhodes grasses.

2.
Nat Ecol Evol ; 5(9): 1283-1290, 2021 09.
Article in English | MEDLINE | ID: mdl-34294898

ABSTRACT

Restoration of degraded drylands is urgently needed to mitigate climate change, reverse desertification and secure livelihoods for the two billion people who live in these areas. Bold global targets have been set for dryland restoration to restore millions of hectares of degraded land. These targets have been questioned as overly ambitious, but without a global evaluation of successes and failures it is impossible to gauge feasibility. Here we examine restoration seeding outcomes across 174 sites on six continents, encompassing 594,065 observations of 671 plant species. Our findings suggest reasons for optimism. Seeding had a positive impact on species presence: in almost a third of all treatments, 100% of species seeded were growing at first monitoring. However, dryland restoration is risky: 17% of projects failed, with no establishment of any seeded species, and consistent declines were found in seeded species as projects matured. Across projects, higher seeding rates and larger seed sizes resulted in a greater probability of recruitment, with further influences on species success including site aridity, taxonomic identity and species life form. Our findings suggest that investigations examining these predictive factors will yield more effective and informed restoration decision-making.


Subject(s)
Ecosystem , Seedlings , Climate Change , Humans , Plants , Seeds
4.
PLoS One ; 13(6): e0199811, 2018.
Article in English | MEDLINE | ID: mdl-29953506

ABSTRACT

Plant species disjunctions have attracted the interest of ecologists for decades. We investigated Trichloris crinita, a native C4 perennial grass with disjunct distribution between subtropical regions of North and South America, testing the hypothesis that the species has a similar realized climatic niche in both subcontinents. The climatic niche of T. crinita in North and South America was characterized and compared using presence records and five uncorrelated bioclimatic variables selected according to their ecological importance for the species. We used reciprocal modeling to make geographic projections of the realized niche within each subcontinent. Niche overlap between T. crinita distributions in North and South America was intermediate for the individual climatic variables and the multivariate space. In all cases the test of equivalence between climates inhabited by T. crinita indicated that the realized niche of the species differ significantly between subcontinents. Also, the similarity test showed that in the majority of cases the realized niche in both subcontinents was significantly different than that expected by chance. T. crinita occupied a greater diversity of environments in South than in North America, while in the latter its distribution was displaced to drier and warmer environments. The modeled geographic distribution using the actual occurrences of the species in North America did not accurately predict the distribution in South America, and vice versa. Together, these results led us to reject the hypothesis of similar niche of T. crinita in both subcontinents. This information may be useful to manage restoration efforts by presenting the suitable areas and climates for the species, and suggesting that translocation of individuals between subcontinents could only be recommended with caution because introduced genotypes can be potentially maladaptive, and could colonize sites actually not occupied by the species within each subcontinent.


Subject(s)
Acclimatization/physiology , Climate , Models, Biological , Poaceae/physiology , North America , South America
5.
Ecol Appl ; 20(7): 1876-89, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21049876

ABSTRACT

It has been proposed that aridity and grazing are convergent selective forces: each one selects for traits conferring resistance to both. However, this conceptual model has not yet been experimentally validated. The aim of this work was to experimentally evaluate the effect of aridity and grazing, as selective forces, on drought and grazing resistance of populations of Trichloris crinita, a native perennial forage grass of the Argentinean Arid Chaco region. We collected seeds in sites with four different combinations of aridity and grazing history (semiarid/ subhumid x heavily grazed/lightly grazed), established them in pots in a common garden, and subjected the resulting plants to different combinations of drought and defoliation. Our results agreed with the convergence model. Aridity has selected T. crinita genotypes that respond better to drought and defoliation in terms of sexual reproduction and leaf growth, and that can evade grazing due to a lower shoot: root ratio and a higher resource allocation to reserves (starch) in stem bases. Similarly, grazing has selected genotypes that respond better to drought and defoliation in terms of sexual reproduction and that can evade grazing due to a lower digestibility of leaf blades. These results allow us to extend concepts of previous models in plant adaptation to herbivory to models on plant adaptation to drought. The only variable in which we obtained a result opposite to predictions was plant height, as plants from semiarid sites were taller (and with more erect tillers) than plants from subhumid sites; we hypothesize that this result might have been a consequence of the selection exerted by the high solar radiation and soil temperatures of semiarid sites. In addition, our work allows for the prediction of the effects of dry or wet growing seasons on the performance of T. crinita plants. Our results suggest that we can rely on dry environments for selecting grazing-resistant genotypes and on high grazing pressure history environments for selecting drought-resistant ones.


Subject(s)
Feeding Behavior/physiology , Poaceae/physiology , Selection, Genetic/physiology , Water/physiology , Animals , Cattle/physiology , Droughts
SELECTION OF CITATIONS
SEARCH DETAIL
...