Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(46): 10442-10449, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37962022

ABSTRACT

On-surface synthesis has emerged as an attractive method for the atomically precise synthesis of new molecular nanostructures, being complementary to the widespread approach based on solution chemistry. It has been particularly successful in the synthesis of graphene nanoribbons and nanographenes. In both cases, the target compound is often generated through cyclodehydrogenation reactions, leading to planarization and the formation of hexagonal rings. To improve the flexibility and tunability of molecular units, however, the incorporation of other, nonbenzenoid, subunits is highly desirable. In this letter, we thoroughly analyze sequential cyclodehydrogenation reactions with a custom-designed molecular precursor. We demonstrate the step-by-step formation of hexagonal and pentagonal rings from the nonplanar precursor within fjord and cove regions, respectively. Computer models comprehensively support the experimental observations, revealing that both reactions imply an initial hydrogen abstraction and a final [1,2] hydrogen shift, but the formation of a pentagonal ring proceeds through a radical mechanism.

2.
Nanoscale ; 14(22): 8069-8077, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35608129

ABSTRACT

The synthesis of novel organic prototypes combining different functionalities is key to achieve operational elements for applications in organic electronics. Here we set the stage towards individually addressable magneto-optical transducers by the on-surface synthesis of optically active manganese-phthalocyanine derivatives (MnPc) obtained directly on a metallic substrate. We created these 2D nanostructures under ultra-high vacuum conditions with atomic precision starting from a simple phthalonitrile precursor with reversible photo-induced reactivity in solution. These precursors maintain their integrity after powder sublimation and coordinate with the Mn ions into tetrameric complexes and then transform into MnPcs on Ag(111) after a cyclotetramerization reaction. Using scanning tunnelling microscopy and spectroscopy together with DFT calculations, we identify the isomeric configuration of two bi-stable structures and show that it is possible to switch them reversibly by mechanical manipulation. Moreover, the robust magnetic moment brought by the central Mn ion provides a feasible pathway towards magneto-optical transducer fabrication. This work should trigger further research confirming such magneto-optical effects in MnPcs both on surfaces and in liquid environments.

3.
ACS Nano ; 14(9): 11120-11129, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32804481

ABSTRACT

The on-surface synthesis of edge-functionalized graphene nanoribbons (GNRs) is challenged by the stability of the functional groups throughout the thermal reaction steps of the synthetic pathway. Edge fluorination is a particularly critical case in which the interaction with the catalytic substrate and intermediate products can induce the complete cleavage of the otherwise strong C-F bonds before the formation of the GNR. Here, we demonstrate how a rational design of the precursor can stabilize the functional group, enabling the synthesis of edge-fluorinated GNRs. The survival of the functionalization is demonstrated by tracking the structural and chemical transformations occurring at each reaction step with complementary X-ray photoelectron spectroscopy and scanning tunneling microscopy measurements. In contrast to previous attempts, we find that the C-F bond survives the cyclodehydrogenation of the intermediate polymers, leaving a thermal window where GNRs withhold more than 80% of the fluorine atoms. We attribute this enhanced stability of the C-F bond to the particular structure of our precursor, which prevents the cleavage of the C-F bond by avoiding interaction with the residual hydrogen originated in the cyclodehydrogenation. This structural protection of the linking bond could be implemented in the synthesis of other sp2-functionalized GNRs.

4.
J Am Chem Soc ; 140(26): 8156-8161, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29893120

ABSTRACT

Here we present a new method that integrates atomic force microscopy (AFM) with analytical tools such as high-performance liquid chromatography (HPLC) with diode-array ultraviolet-visible (UV) absorbance, and mass spectrometry (MS) along with synthetic chemistry. This allows the detection, identification, and quantification of novel polycyclic aromatic hydrocarbons (PAH) in complex molecular mixtures. This multidisciplinary methodology is employed to characterize the supercritical pyrolysis products of n-decane, a model fuel. The pyrolysis experiments result in a complex mixture of both unsubstituted as well as highly methylated PAH. We demonstrate the AFM-driven discovery of a novel compound, benz[ l]indeno[1,2,3- cd]pyrene, with the chemical structure assignment serving as input for the chemical synthesis of such molecule. The synthesis is verified by AFM, and the synthesized compound is used as a reference standard in analytical measurements, establishing the first-ever unequivocal identification and quantification of this PAH as a fuel product. Moreover, the high-resolution AFM analysis detected several five- to eight-ring PAH, which represents novel fuel pyrolysis and/or combustion products. This work provides a route to develop new analytical standards by symbiotically using AFM, chemical synthesis, and modern analytical tools.

5.
Chem Commun (Camb) ; 54(47): 5996-5999, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29790509

ABSTRACT

The metal-catalyzed [2+2+2] cocycloaddition of arynes with pyramidalized alkenes is presented. The generation of a highly reactive pyramidalized alkene in the presence of a large excess of in situ-produced arynes led to the corresponding cocyclotrimerization (1 : 2)-adducts in good yields, establishing the first example of a palladium-based reaction of a pyramidalized alkene.

SELECTION OF CITATIONS
SEARCH DETAIL
...