Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 09 25.
Article in English | MEDLINE | ID: mdl-37747150

ABSTRACT

As cells migrate and experience forces from their surroundings, they constantly undergo mechanical deformations which reshape their plasma membrane (PM). To maintain homeostasis, cells need to detect and restore such changes, not only in terms of overall PM area and tension as previously described, but also in terms of local, nanoscale topography. Here, we describe a novel phenomenon, by which cells sense and restore mechanically induced PM nanoscale deformations. We show that cell stretch and subsequent compression reshape the PM in a way that generates local membrane evaginations in the 100 nm scale. These evaginations are recognized by I-BAR proteins, which triggers a burst of actin polymerization mediated by Rac1 and Arp2/3. The actin polymerization burst subsequently re-flattens the evagination, completing the mechanochemical feedback loop. Our results demonstrate a new mechanosensing mechanism for PM shape homeostasis, with potential applicability in different physiological scenarios.


Subject(s)
Actins , Actins/metabolism , Cell Membrane/metabolism , Homeostasis
2.
Nat Commun ; 12(1): 6550, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34772909

ABSTRACT

In many physiological situations, BAR proteins reshape membranes with pre-existing curvature (templates), contributing to essential cellular processes. However, the mechanism and the biological implications of this reshaping process remain unclear. Here we show, both experimentally and through modelling, that BAR proteins reshape low curvature membrane templates through a mechanochemical phase transition. This phenomenon depends on initial template shape and involves the co-existence and progressive transition between distinct local states in terms of molecular organization (protein arrangement and density) and membrane shape (template size and spherical versus cylindrical curvature). Further, we demonstrate in cells that this phenomenon enables a mechanotransduction mode, in which cellular stretch leads to the mechanical formation of membrane templates, which are then reshaped into tubules by BAR proteins. Our results demonstrate the interplay between membrane mechanics and BAR protein molecular organization, integrating curvature sensing and generation in a comprehensive framework with implications for cell mechanical responses.


Subject(s)
Mechanotransduction, Cellular/physiology , Membrane Proteins/metabolism , Cell Membrane/metabolism , Cell Membrane/physiology , Cells, Cultured , Computational Biology , Humans , Lipid Bilayers/chemistry , Mechanotransduction, Cellular/genetics , Membrane Proteins/genetics , Microscopy, Fluorescence
3.
Nat Commun ; 12(1): 4229, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244477

ABSTRACT

Cell response to force regulates essential processes in health and disease. However, the fundamental mechanical variables that cells sense and respond to remain unclear. Here we show that the rate of force application (loading rate) drives mechanosensing, as predicted by a molecular clutch model. By applying dynamic force regimes to cells through substrate stretching, optical tweezers, and atomic force microscopy, we find that increasing loading rates trigger talin-dependent mechanosensing, leading to adhesion growth and reinforcement, and YAP nuclear localization. However, above a given threshold the actin cytoskeleton softens, decreasing loading rates and preventing reinforcement. By stretching rat lungs in vivo, we show that a similar phenomenon may occur. Our results show that cell sensing of external forces and of passive mechanical parameters (like tissue stiffness) can be understood through the same mechanisms, driven by the properties under force of the mechanosensing molecules involved.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Adhesion/physiology , Mechanotransduction, Cellular/physiology , Actin Cytoskeleton/ultrastructure , Animals , Cell Nucleus/metabolism , Cells, Cultured , Cytoplasm/metabolism , Fibroblasts , Gene Knockdown Techniques , Intracellular Signaling Peptides and Proteins/metabolism , Lung/physiology , Male , Mice , Mice, Knockout , Microscopy, Atomic Force , Optical Tweezers , Paxillin/metabolism , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Respiration , Specific Pathogen-Free Organisms , Talin/genetics , Talin/metabolism , YAP-Signaling Proteins
4.
Philos Trans R Soc Lond B Biol Sci ; 374(1779): 20180221, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31431176

ABSTRACT

Cells are constantly submitted to external mechanical stresses, which they must withstand and respond to. By forming a physical boundary between cells and their environment that is also a biochemical platform, the plasma membrane (PM) is a key interface mediating both cellular response to mechanical stimuli, and subsequent biochemical responses. Here, we review the role of the PM as a mechanosensing structure. We first analyse how the PM responds to mechanical stresses, and then discuss how this mechanical response triggers downstream biochemical responses. The molecular players involved in PM mechanochemical transduction include sensors of membrane unfolding, membrane tension, membrane curvature or membrane domain rearrangement. These sensors trigger signalling cascades fundamental both in healthy scenarios and in diseases such as cancer, which cells harness to maintain integrity, keep or restore homeostasis and adapt to their external environment. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.


Subject(s)
Cell Membrane/physiology , Homeostasis , Mechanotransduction, Cellular , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...