Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37628953

ABSTRACT

Light and photoperiod are environmental signals that regulate flowering transition. In plants like Arabidopsis thaliana, this regulation relies on CONSTANS, a transcription factor that is negatively posttranslational regulated by phytochrome B during the morning, while it is stabilized by PHYA and cryptochromes 1/2 at the end of daylight hours. CO induces the expression of FT, whose protein travels from the leaves to the apical meristem, where it binds to FD to regulate some flowering genes. Although PHYB delays flowering, we show that light and PHYB positively regulate XAANTAL1 and other flowering genes in the shoot apices. Also, the genetic data indicate that XAL1 and FD participate in the same signaling pathway in flowering promotion when plants are grown under a long-day photoperiod at 22 °C. By contrast, XAL1 functions independently of FD or PIF4 to induce flowering at higher temperatures (27 °C), even under long days. Furthermore, XAL1 directly binds to FD, SOC1, LFY, and AP1 promoters. Our findings lead us to propose that light and temperature influence the floral network at the meristem level in a partially independent way of the signaling generated from the leaves.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Fever , Meristem/genetics , Phytochrome B , Temperature , Transcription Factors/genetics
2.
Front Plant Sci ; 13: 852047, 2022.
Article in English | MEDLINE | ID: mdl-36017258

ABSTRACT

Post-embryonic plant development is characterized by a period of vegetative growth during which a combination of intrinsic and extrinsic signals triggers the transition to the reproductive phase. To understand how different flowering inducing and repressing signals are associated with phase transitions of the Shoot Apical Meristem (SAM), we incorporated available data into a dynamic gene regulatory network model for Arabidopsis thaliana. This Flowering Transition Gene Regulatory Network (FT-GRN) formally constitutes a dynamic system-level mechanism based on more than three decades of experimental data on flowering. We provide novel experimental data on the regulatory interactions of one of its twenty-three components: a MADS-box transcription factor XAANTAL2 (XAL2). These data complement the information regarding flowering transition under short days and provides an example of the type of questions that can be addressed by the FT-GRN. The resulting FT-GRN is highly connected and integrates developmental, hormonal, and environmental signals that affect developmental transitions at the SAM. The FT-GRN is a dynamic multi-stable Boolean system, with 223 possible initial states, yet it converges into only 32 attractors. The latter are coherent with the expression profiles of the FT-GRN components that have been experimentally described for the developmental stages of the SAM. Furthermore, the attractors are also highly robust to initial states and to simulated perturbations of the interaction functions. The model recovered the meristem phenotypes of previously described single mutants. We also analyzed the attractors landscape that emerges from the postulated FT-GRN, uncovering which set of signals or components are critical for reproductive competence and the time-order transitions observed in the SAM. Finally, in the context of such GRN, the role of XAL2 under short-day conditions could be understood. Therefore, this model constitutes a robust biological module and the first multi-stable, dynamical systems biology mechanism that integrates the genetic flowering pathways to explain SAM phase transitions.

3.
Int J Mol Sci ; 22(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34071961

ABSTRACT

Flowering is one of the most critical developmental transitions in plants' life. The irreversible change from the vegetative to the reproductive stage is strictly controlled to ensure the progeny's success. In Arabidopsis thaliana, seven flowering genetic pathways have been described under specific growth conditions. However, the evidence condensed here suggest that these pathways are tightly interconnected in a complex multilevel regulatory network. In this review, we pursue an integrative approach emphasizing the molecular interactions among the flowering regulatory network components. We also consider that the same regulatory network prevents or induces flowering phase change in response to internal cues modulated by environmental signals. In this sense, we describe how during the vegetative phase of development it is essential to prevent the expression of flowering promoting genes until they are required. Then, we mention flowering regulation under suboptimal growing temperatures, such as those in autumn and winter. We next expose the requirement of endogenous signals in flowering, and finally, the acceleration of this transition by long-day photoperiod and temperature rise signals allowing A. thaliana to bloom in spring and summer seasons. With this approach, we aim to provide an initial systemic view to help the reader integrate this complex developmental process.


Subject(s)
Arabidopsis/physiology , Flowers/physiology , Gene Expression Regulation, Plant , Signal Transduction , Biomarkers , Gene Regulatory Networks , Photoperiod , Plant Development/genetics , Seasons , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...