Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 10593, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31332237

ABSTRACT

Frailty is an age-associated condition, characterized by an inappropriate response to stress that results in a higher frequency of adverse outcomes (e.g., mortality, institutionalization and disability). Some light has been shed over its genetic background, but this is still a matter of debate. In the present study, we used network biology to analyze the interactome of frailty-related genes at different levels to relate them with pathways, clinical deficits and drugs with potential therapeutic implications. Significant pathways involved in frailty: apoptosis, proteolysis, muscle proliferation, and inflammation; genes as FN1, APP, CREBBP, EGFR playing a role as hubs and bottlenecks in the interactome network and epigenetic factors as HIST1H3 cluster and miR200 family were also involved. When connecting clinical deficits and genes, we identified five clusters that give insights into the biology of frailty: cancer, glucocorticoid receptor, TNF-α, myostatin, angiotensin converter enzyme, ApoE, interleukine-12 and -18. Finally, when performing network pharmacology analysis of the target nodes, some compounds were identified as potentially therapeutic (e.g., epigallocatechin gallate and antirheumatic agents); while some other substances appeared to be toxicants that may be involved in the development of this condition.


Subject(s)
Epigenesis, Genetic/drug effects , Frailty/genetics , Aging/drug effects , Aging/genetics , Apoptosis/drug effects , Apoptosis/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Frailty/drug therapy , Genes/drug effects , Genes/genetics , Humans , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Pharmacology/methods , Proteolysis/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , Systems Biology/methods
2.
Curr Neuropharmacol ; 4(2): 149-63, 2006 Apr.
Article in English | MEDLINE | ID: mdl-18615129

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive and irreversible loss of memory and other cognitive functions. Substantial evidence based on genetic, neuropathological and biochemical data has established the central role of beta-amyloid protein (betaAP) in this pathology. Although the precise etiology of AD is not well understood yet, strong evidence for some of the molecular events that lead to progressive brain dysfunction and neurodegeneration in AD has been afforded by identification of biochemical pathways implicated in the generation of betaAP, development of transgenic models exhibiting progressive disease pathology and by data on the effects of betaAP at the neuronal network level. However, the mechanisms by which betaAP causes cognitive decline have not been determined, nor is it clear if the degree of dementia correlates in time with the degree of neuronal loss. Hence, it is of interest to understand the biochemical processes involved in the mechanisms of betaAP-induced neurotoxicity and the mechanisms involved in electrophysiological effects of this protein on different parameters of synaptic transmission and on neuronal firing properties. In this review we analyze recent evidence suggesting a complex role of betaAP in the molecular events that lead to progressive loss of function and eventually to neurodegeneration in AD as well as the therapeutic implications based on betaAP metabolism inhibition.

SELECTION OF CITATIONS
SEARCH DETAIL
...