Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Microbiol ; 23(1): 143-159, 2021 01.
Article in English | MEDLINE | ID: mdl-33063925

ABSTRACT

Sphingolipids are essential and common membrane components in eukaryotic organisms, participating in many important cellular functions. Only a few bacteria are thought to harbour sphingolipids in their membranes, among them the well-studied α-proteobacterium Caulobacter crescentus, a model organism for asymmetric cell division and cellular differentiation. Here, we report that C. crescentus wild type produces several molecular species of dihydroceramides, which are not produced in a mutant lacking the structural gene for serine palmitoyltransferase (spt). Whereas growth of a spt-deficient mutant and wild type are indistinguishable during the exponential phase of growth, survival of the spt-deficient mutant is much reduced, in comparison with wild type, during stationary phase of growth, especially at elevated temperatures. The structural gene for spt is located within a genomic cluster, comprising another 16 genes and which, like spt, are important for fitness of C. crescentus. Mutants deficient in genes linked to spt by high cofitness were unable to produce dihydroceramide or to survive in stationary phase of growth at elevated temperatures. At least five structural genes are required for dihydroceramide biosynthesis in C. crescentus and sphingolipid biosynthesis is needed for survival of this bacterium and the integrity of its outer membrane.


Subject(s)
Bacterial Proteins/metabolism , Caulobacter crescentus/growth & development , Caulobacter crescentus/metabolism , Ceramides/biosynthesis , Bacterial Proteins/genetics , Caulobacter crescentus/genetics , Cell Membrane/genetics , Cell Membrane/metabolism , Mutation , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Sphingolipids/biosynthesis
2.
Microbiol Res ; 214: 91-100, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30031486

ABSTRACT

In bacteria, the 5'-end-dependent RNA degradation is triggered by the RNA pyrophosphohydrolase RppH converting tri/diphosphate to monophosphate transcripts. This study shows that in the soil bacterium Azotobacter vinelandii, inactivation of rppH gene negatively affected the production of bioplastic poly-ß-hydroxybutyrate (PHB) by reducing the expression at the translational level of PhbR, the specific transcriptional activator of the phbBAC biosynthetic operon. The effect of RppH on the translation of phbR seemed to be exerted through the translational repressor RsmA, as the inactivation of rsmA in the rppH mutant restored the phbR expression. Interestingly, in Escherichia coli inactivation of rppH also affected the expression of CsrA, the RsmA homolog. The level of the csrA transcript was higher and more stable in the E. coli rppH mutant than in the wild type strain. Additionally, and in contrast to the csrA mutants that are known to have a defective swimming phenotype, the E. coli rppH mutant showed a hyper-swimming phenotype that was suppressed by a csrA mutation, and the AvRppH restored to wild type level the swimming phenotype to the E. coli rppH mutant. We propose that in both A. vinelandii and E. coli, RppH activity plays a role in the expression of the translational regulator protein RsmA/CsrA.


Subject(s)
Acid Anhydride Hydrolases/metabolism , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , RNA-Binding Proteins/biosynthesis , Repressor Proteins/biosynthesis , Gene Deletion , Protein Biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL