Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Type of study
Publication year range
1.
Hortic Res ; 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35039829

ABSTRACT

Trichomes are specialised epidermal cells developed in the aerial surface of almost every terrestrial plant. These structures form physical barriers, which combined with their capability of synthesis of complex molecules, prevent plagues from spreading and confer trichomes a key role in the defence against herbivores. In this work, the tomato gene HAIRPLUS (HAP) that controls glandular trichome density in tomato plants was characterised. HAP belongs to a group of proteins involved in histone tail modifications although some also bind methylated DNA. HAP loss of function promotes epigenomic modifications in the tomato genome reflected in numerous differentially methylated cytosines and causes transcriptomic changes in hap mutant plants. Taken together, these findings demonstrate that HAP links epigenome remodelling with multicellular glandular trichome development and reveal that HAP is a valuable genomic tool for pest resistance in tomato breeding.

4.
Plant Biotechnol J ; 15(11): 1439-1452, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28317264

ABSTRACT

With the completion of genome sequencing projects, the next challenge is to close the gap between gene annotation and gene functional assignment. Genomic tools to identify gene functions are based on the analysis of phenotypic variations between a wild type and its mutant; hence, mutant collections are a valuable resource. In this sense, T-DNA collections allow for an easy and straightforward identification of the tagged gene, serving as the basis of both forward and reverse genetic strategies. This study reports on the phenotypic and molecular characterization of an enhancer trap T-DNA collection in tomato (Solanum lycopersicum L.), which has been produced by Agrobacterium-mediated transformation using a binary vector bearing a minimal promoter fused to the uidA reporter gene. Two genes have been isolated from different T-DNA mutants, one of these genes codes for a UTP-glucose-1-phosphate uridylyltransferase involved in programmed cell death and leaf development, which means a novel gene function reported in tomato. Together, our results support that enhancer trapping is a powerful tool to identify novel genes and regulatory elements in tomato and that this T-DNA mutant collection represents a highly valuable resource for functional analyses in this fleshy-fruited model species.


Subject(s)
Enhancer Elements, Genetic , Genes, Plant/genetics , Genomics/methods , Mutagenesis, Insertional/methods , Solanum lycopersicum/genetics , Agrobacterium/genetics , Base Sequence , Chromosome Mapping , DNA, Bacterial/genetics , DNA, Plant/isolation & purification , Fruit , Gene Silencing , Genes, Plant/physiology , Genes, Reporter , Phenotype , Plant Leaves/growth & development , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...