Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(2): e0279910, 2023.
Article in English | MEDLINE | ID: mdl-36730238

ABSTRACT

BACKGROUND: Wearable sensors-based systems have emerged as a potential tool to continuously monitor Parkinson's Disease (PD) motor features in free-living environments. OBJECTIVES: To analyse the responsivity of wearable inertial sensor (WIS) measures (On/Off-Time, dyskinesia, freezing of gait (FoG) and gait parameters) after treatment adjustments. We also aim to study the ability of the sensor in the detection of MF, dyskinesia, FoG and the percentage of Off-Time, under ambulatory conditions of use. METHODS: We conducted an observational, open-label study. PD patients wore a validated WIS (STAT-ONTM) for one week (before treatment), and one week, three months after therapeutic changes. The patients were analyzed into two groups according to whether treatment changes had been indicated or not. RESULTS: Thirty-nine PD patients were included in the study (PD duration 8 ± 3.5 years). Treatment changes were made in 29 patients (85%). When comparing the two groups (treatment intervention vs no intervention), the WIS detected significant changes in the mean percentage of Off-Time (p = 0.007), the mean percentage of On-Time (p = 0.002), the number of steps (p = 0.008) and the gait fluidity (p = 0.004). The mean percentage of Off-Time among the patients who decreased their Off-Time (79% of patients) was -7.54 ± 5.26. The mean percentage of On-Time among the patients that increased their On-Time (59% of patients) was 8.9 ± 6.46. The Spearman correlation between the mean fluidity of the stride and the UPDRS-III- Factor I was 0.6 (p = <0.001). The system detected motor fluctuations (MF) in thirty-seven patients (95%), whilst dyskinesia and FoG were detected in fifteen (41%), and nine PD patients (23%), respectively. However, the kappa agreement analysis between the UPDRS-IV/clinical interview and the sensor was 0.089 for MF, 0.318 for dyskinesia and 0.481 for FoG. CONCLUSIONS: It's feasible to use this sensor for monitoring PD treatment under ambulatory conditions. This system could serve as a complementary tool to assess PD motor complications and treatment adjustments, although more studies are required.


Subject(s)
Dyskinesias , Gait Disorders, Neurologic , Parkinson Disease , Wearable Electronic Devices , Humans , Parkinson Disease/complications , Parkinson Disease/diagnosis , Parkinson Disease/therapy , Gait Disorders, Neurologic/diagnosis , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/therapy , Feasibility Studies , Gait
2.
Sci Rep ; 9(1): 13434, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31530855

ABSTRACT

Our research team previously developed an accelerometry-based device, which can be worn on the waist during daily life activities and detects the occurrence of dyskinesia in patients with Parkinson's disease. The goal of this study was to analyze the magnitude of correlation between the numeric output of the device algorithm and the results of the Unified Dyskinesia Rating Scale (UDysRS), administered by a physician. In this study, 13 Parkinson's patients, who were symptomatic with dyskinesias, were monitored with the device at home, for an average period of 30 minutes, while performing normal daily life activities. Each patient's activity was simultaneously video-recorded. A physician was in charge of reviewing the recorded videos and determining the severity of dyskinesia through the UDysRS for every patient. The sensor device yielded only one value for dyskinesia severity, which was calculated by averaging the recorded device readings. Correlation between the results of physician's assessment and the sensor output was analyzed with the Spearman's correlation coefficient. The correlation coefficient between the sensor output and UDysRS result was 0.70 (CI 95%: 0.33-0.88; p = 0.01). Since the sensor was located on the waist, the correlation between the sensor output and the results of the trunk and legs scale sub-items was calculated: 0.91 (CI 95% 0.76-0.97: p < 0.001). The conclusion is that the magnitude of dyskinesia, as measured by the tested device, presented good correlation with that observed by a physician.


Subject(s)
Dyskinesias/etiology , Monitoring, Physiologic/methods , Parkinson Disease/physiopathology , Accelerometry/instrumentation , Accelerometry/methods , Aged , Algorithms , Cohort Studies , Female , Humans , Male , Middle Aged , Monitoring, Physiologic/instrumentation , Video Recording , Wearable Electronic Devices
3.
Gait Posture ; 59: 1-6, 2018 01.
Article in English | MEDLINE | ID: mdl-28963889

ABSTRACT

The treatment of Parkinson's disease (PD) with levodopa is very effective. However, over time, motor complications (MCs) appear, restricting the patient from leading a normal life. One of the most disabling MCs is ON-OFF fluctuations. Gathering accurate information about the clinical status of the patient is essential for planning treatment and assessing its effect. Systems such as the REMPARK system, capable of accurately and reliably monitoring ON-OFF fluctuations, are of great interest. OBJECTIVE: To analyze the ability of the REMPARK System to detect ON-OFF fluctuations. METHODS: Forty-one patients with moderate to severe idiopathic PD were recruited according to the UK Parkinson's Disease Society Brain Bank criteria. Patients with motor fluctuations, freezing of gait and/or dyskinesia and who were able to walk unassisted in the OFF phase, were included in the study. Patients wore the REMPARK System for 3days and completed a diary of their motor state once every hour. RESULTS: The record obtained by the REMPARK System, compared with patient-completed diaries, demonstrated 97% sensitivity in detecting OFF states and 88% specificity (i.e., accuracy in detecting ON states). CONCLUSION: The REMPARK System detects an accurate evaluation of ON-OFF fluctuations in PD; this technology paves the way for an optimisation of the symptomatic control of PD motor symptoms as well as an accurate assessment of medication efficacy.


Subject(s)
Monitoring, Physiologic/methods , Motor Disorders/diagnosis , Parkinson Disease/diagnosis , Aged , Female , Humans , Male , Middle Aged , Monitoring, Physiologic/instrumentation , Motor Disorders/etiology , Parkinson Disease/complications , Pilot Projects , Prospective Studies , Sensitivity and Specificity
5.
Front Neurol ; 8: 431, 2017.
Article in English | MEDLINE | ID: mdl-28919877

ABSTRACT

BACKGROUND: Our group earlier developed a small monitoring device, which uses accelerometer measurements to accurately detect motor fluctuations in patients with Parkinson's (On and Off state) based on an algorithm that characterizes gait through the frequency content of strides. To further validate the algorithm, we studied the correlation of its outputs with the motor section of the Unified Parkinson's Disease Rating Scale part-III (UPDRS-III). METHOD: Seventy-five patients suffering from Parkinson's disease were asked to walk both in the Off and the On state while wearing the inertial sensor on the waist. Additionally, all patients were administered the motor section of the UPDRS in both motor phases. Tests were conducted at the patient's home. Convergence between the algorithm and the scale was evaluated by using the Spearman's correlation coefficient. RESULTS: Correlation with the UPDRS-III was moderate (rho -0.56; p < 0.001). Correlation between the algorithm outputs and the gait item in the UPDRS-III was good (rho -0.73; p < 0.001). The factorial analysis of the UPDRS-III has repeatedly shown that several of its items can be clustered under the so-called Factor 1: "axial function, balance, and gait." The correlation between the algorithm outputs and this factor of the UPDRS-III was -0.67 (p < 0.01). CONCLUSION: The correlation achieved by the algorithm with the UPDRS-III scale suggests that this algorithm might be a useful tool for monitoring patients with Parkinson's disease and motor fluctuations.

6.
Artif Intell Med ; 67: 47-56, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26831150

ABSTRACT

BACKGROUND: After several years of treatment, patients with Parkinson's disease (PD) tend to have, as a side effect of the medication, dyskinesias. Close monitoring may benefit patients by enabling doctors to tailor a personalised medication regimen. Moreover, dyskinesia monitoring can help neurologists make more informed decisions in patient's care. OBJECTIVE: To design and validate an algorithm able to be embedded into a system that PD patients could wear during their activities of daily living with the purpose of registering the occurrence of dyskinesia in real conditions. MATERIALS AND METHODS: Data from an accelerometer positioned in the waist are collected at the patient's home and are annotated by experienced clinicians. Data collection is divided into two parts: a main database gathered from 92 patients used to partially train and to evaluate the algorithms based on a leave-one-out approach and, on the other hand, a second database from 10 patients which have been used to also train a part of the detection algorithm. RESULTS: Results show that, depending on the severity and location of dyskinesia, specificities and sensitivities higher than 90% are achieved using a leave-one-out methodology. Although mild dyskinesias presented on the limbs are detected with 95% specificity and 39% sensitivity, the most important types of dyskinesia (any strong dyskinesia and trunk mild dyskinesia) are assessed with 95% specificity and 93% sensitivity. CONCLUSION: The presented algorithmic method and wearable device have been successfully validated in monitoring the occurrence of strong dyskinesias and mild trunk dyskinesias during activities of daily living.


Subject(s)
Accelerometry/instrumentation , Antiparkinson Agents/therapeutic use , Dyskinesias/diagnosis , Levodopa/therapeutic use , Parkinson Disease/drug therapy , Antiparkinson Agents/adverse effects , Dyskinesias/etiology , Humans , Levodopa/adverse effects , Monitoring, Physiologic , Parkinson Disease/complications , Support Vector Machine
7.
Med Biol Eng Comput ; 54(1): 223-33, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26429349

ABSTRACT

Freezing of gait (FOG) is a common motor symptom of Parkinson's disease (PD), which presents itself as an inability to initiate or continue gait. This paper presents a method to monitor FOG episodes based only on acceleration measurements obtained from a waist-worn device. Three approximations of this method are tested. Initially, FOG is directly detected by a support vector machine (SVM). Then, classifier's outputs are aggregated over time to determine a confidence value, which is used for the final classification of freezing (i.e., second and third approach). All variations are trained with signals of 15 patients and evaluated with signals from another 5 patients. Using a linear SVM kernel, the third approach provides 98.7% accuracy and a geometric mean of 96.1%. Moreover, it is investigated whether frequency features are enough to reliably detect FOG. Results show that these features allow the method to detect FOG with accuracies above 90% and that frequency features enable a reliable monitoring of FOG by using simply a waist sensor.


Subject(s)
Accelerometry/methods , Gait , Parkinson Disease/physiopathology , Humans , Machine Learning , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...