Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(6): e0234904, 2020.
Article in English | MEDLINE | ID: mdl-32584912

ABSTRACT

BACKGROUND: Falls in the elderly are a major public health concern because of their high incidence, the involvement of many risk factors, the considerable post-fall morbidity and mortality, and the health-related and social costs. Given that many falls are preventable, the early identification of older adults at risk of falling is crucial in order to develop tailored interventions to prevent such falls. To date, however, the fall-risk assessment tools currently used in the elderly have not shown sufficiently high predictive validity to distinguish between subjects at high and low fall risk. Consequently, predicting the risk of falling remains an unsolved issue in geriatric medicine. This one-year prospective study aims to develop and validate, by means of a cross-validation method, a multifactorial fall-risk model based on clinical and robotic parameters in older adults. METHODS: Community-dwelling subjects aged ≥ 65 years were enrolled. At the baseline, all subjects were evaluated for history of falling and number of drugs taken daily, and their gait and balance were evaluated by means of the Timed "Up & Go" test (TUG), Gait Speed (GS), Short Physical Performance Battery (SPPB) and Performance-Oriented Mobility Assessment (POMA). They also underwent robotic assessment by means of the hunova robotic device to evaluate the various components of balance. All subjects were followed up for one-year and the number of falls was recorded. The models that best predicted falls-on the basis of: i) only clinical parameters; ii) only robotic parameters; iii) clinical plus robotic parameters-were identified by means of a cross-validation method. RESULTS: Of the 100 subjects initially enrolled, 96 (62 females, mean age 77.17±.49 years) completed the follow-up and were included. Within one year, 32 participants (33%) experienced at least one fall ("fallers"), while 64 (67%) did not ("non-fallers"). The best classifier model to emerge from cross-validated fall-risk estimation included eight clinical variables (age, sex, history of falling in the previous 12 months, TUG, Tinetti, SPPB, Low GS, number of drugs) and 20 robotic parameters, and displayed an area under the receiver operator characteristic (ROC) curve of 0.81 (95% CI: 0.72-0.90). Notably, the model that included only three of these clinical variables (age, history of falls and low GS) plus the robotic parameters showed similar accuracy (ROC AUC 0.80, 95% CI: 0.71-0.89). In comparison with the best classifier model that comprised only clinical parameters (ROC AUC: 0.67; 95% CI: 0.55-0.79), both models performed better in predicting fall risk, with an estimated Net Reclassification Improvement (NRI) of 0.30 and 0.31 (p = 0.02), respectively, and an estimated Integrated Discrimination Improvement (IDI) of 0.32 and 0.27 (p<0.001), respectively. The best model that comprised only robotic parameters (the 20 parameters identified in the final model) achieved a better performance than the clinical parameters alone, but worse than the combination of both clinical and robotic variables (ROC AUC: 0.73, 95% CI 0.63-0.83). CONCLUSION: A multifactorial fall-risk assessment that includes clinical and hunova robotic variables significantly improves the accuracy of predicting the risk of falling in community-dwelling older people. Our data suggest that combining clinical and robotic assessments can more accurately identify older people at high risk of falls, thereby enabling personalized fall-prevention interventions to be undertaken.


Subject(s)
Accidental Falls/prevention & control , Geriatric Assessment/methods , Independent Living/statistics & numerical data , Robotics , Accidental Falls/statistics & numerical data , Aged , Aged, 80 and over , Female , Humans , Incidence , Male , Postural Balance/physiology , Prospective Studies , Risk Assessment/methods , Walking Speed/physiology
2.
Rejuvenation Res ; 22(4): 299-305, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30382001

ABSTRACT

The multidimensional prognostic index (MPI) is a comprehensive geriatric assessment (CGA)-based tool that accurately predicts negative health outcomes in older subjects with different diseases and settings. To calculate the MPI several validated tools are assessed by health care professionals according to the CGA, whereas self-reported information by the patients is not available, but it could be of importance for the early identification of frailty. We aimed to develop and validate a self-administered MPI (SELFY-MPI) in community-dwelling subjects. For this reason, we enrolled 167 subjects (mean age = 67.3, range = 20-88 years, 51% = men). All subjects underwent a CGA-based assessment to calculate the MPI and the SELFY-MPI. The SELFY-MPI included the assessment of (1) basic and instrumental activities of daily living, (2) mobility, (3) memory, (4) nutrition, (5) comorbidity, (6) number of medications, and (7) socioeconomic situation. The Bland-Altman methodology was used to measure the agreement between MPI and SELFY-MPI. The mean MPI and SELFY-MPI values were 0.147 and 0.145, respectively. The mean difference was +0.002 ± standard deviation of 0.07. Lower and upper 95% limits of agreement were -0.135 and +0.139, respectively, with only 5 of 167 (3%) of observations outside the limits. Stratified analysis by age provided similar results for younger (≤65 years old, n = 45) and older subjects (>65 years, n = 122). The analysis of variances in subjects subdivided according to different year decades showed no differences of agreement according to age. In conclusion, the SELFY-MPI can be used as a prognostic tool in subjects of different ages.


Subject(s)
Independent Living , Public Health , Self Administration , Activities of Daily Living , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...