Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurology ; 99(22): e2428-e2436, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36266044

ABSTRACT

BACKGROUND AND OBJECTIVES: To assess the concordance and discordance between the core Alzheimer disease (AD) CSF biomarkers and [18F]fluorodeoxyglucose (FDG)-PET patterns evaluated clinically in memory clinic patients who meet appropriate use criteria for AD biomarker investigations. METHODS: We retrospectively assessed participants with atypical and/or early-onset dementia evaluated at a tertiary care memory clinic. All individuals underwent CSF evaluations for Aß42, phosphorylated tau (P-tau181) and total tau, and brain [18F]FDG-PET. [18F]FDG-PET data were visually interpreted by 2 nuclear medicine experts as being consistent with AD or non-AD. CSF biomarker results were similarly grouped into AD biomarker positive/negative. Contingency tables and Kappa coefficients were used to establish the level of agreement and disagreement between CSF and [18F]FDG-PET results in all individuals. RESULTS: One hundred thirty-six individuals had both [18F]FDG-PET and lumbar puncture performed as part of the early-onset and/or atypical dementia assessments. [18F]FDG-PET showed a pattern suggestive of AD in 43% of patients, while CSF biomarkers showed results consistent with AD in 57% of participants. In patients who met criteria for AD biomarker investigations, we found that [18F]FDG-PET was discordant with CSF AD biomarkers in nearly 20% of cases; 12% of individuals with [18F]FDG-PET scans consistent with AD had AD-negative CSF results; and 7% of individuals with [18F]FDG-PET scans not consistent with AD had AD-positive CSF results, potentially suggesting atypical AD variants or less advanced neurodegeneration. [18F]FDG-PET discriminated patients with an AD-positive CSF profile from patients with an AD-negative profile with a sensitivity and specificity higher than 80% (sensitivity: 81%, 95% CI = 71-88%, SP: 81%, 95% CI = 68-89%). Furthermore, [18F]FDG-PET had a positive predictive value of 87% (95% CI = 78-93%) and a negative predictive value of 72% (95% CI = 60-82%). DISCUSSION: CSF and [18F]FDG-PET disagreed in nearly 20% of the cases studied in this clinical series. While CSF Aß42 and P-tau181 biomarkers are specific for AD, the topographical information from [18F]FDG-PET may provide complementary information.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Fluorodeoxyglucose F18 , tau Proteins , Amyloid beta-Peptides , Retrospective Studies , Positron-Emission Tomography , Biomarkers , Peptide Fragments
2.
J Cereb Blood Flow Metab ; 42(5): 788-801, 2022 05.
Article in English | MEDLINE | ID: mdl-34378436

ABSTRACT

In vivo biomarker abnormalities provide measures to monitor therapeutic interventions targeting amyloid-ß pathology as well as its effects on downstream processes associated with Alzheimer's disease pathophysiology. Here, we applied an in vivo longitudinal study design combined with imaging and cerebrospinal fluid biomarkers, mirroring those used in human clinical trials to assess the efficacy of a novel brain-penetrating anti-amyloid fusion protein treatment in the McGill-R-Thy1-APP transgenic rat model. The bi-functional fusion protein consisted of a blood-brain barrier crossing single domain antibody (FC5) fused to an amyloid-ß oligomer-binding peptide (ABP) via Fc fragment of mouse IgG (FC5-mFc2a-ABP). A five-week treatment with FC5-mFc2a-ABP (loading dose of 30 mg/Kg/iv followed by 15 mg/Kg/week/iv for four weeks) substantially reduced brain amyloid-ß levels as measured by positron emission tomography and increased the cerebrospinal fluid amyloid-ß42/40 ratio. In addition, the 5-week treatment rectified the cerebrospinal fluid neurofilament light chain concentrations, resting-state functional connectivity, and hippocampal atrophy measured using magnetic resonance imaging. Finally, FC5-mFc2a-ABP (referred to as KG207-M) treatment did not induce amyloid-related imaging abnormalities such as microhemorrhage. Together, this study demonstrates the translational values of the designed preclinical studies for the assessment of novel therapies based on the clinical biomarkers providing tangible metrics for designing early-stage clinical trials.


Subject(s)
Alzheimer Disease , Amyloidosis , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Biomarkers , Longitudinal Studies , Mice , Positron-Emission Tomography , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...