Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(3): e0150438, 2016.
Article in English | MEDLINE | ID: mdl-26938220

ABSTRACT

Many modern filtration technologies are incapable of the complete removal of Cryptosporidium oocysts from drinking-water. Consequently, Cryptosporidium-contaminated drinking-water supplies can severely implicate both water utilities and consumers. Existing methods for the detection of Cryptosporidium in drinking-water do not discern between non-pathogenic and pathogenic species, nor between viable and non-viable oocysts. Using FluidFM, a novel force spectroscopy method employing microchannelled cantilevers for single-cell level manipulation, we assessed the size and deformability properties of two species of Cryptosporidium that pose varying levels of risk to human health. A comparison of such characteristics demonstrated the ability of FluidFM to discern between Cryptosporidium muris and Cryptosporidium parvum with 86% efficiency, whilst using a measurement throughput which exceeded 50 discrete oocysts per hour. In addition, we measured the deformability properties for untreated and temperature-inactivated oocysts of the highly infective, human pathogenic C. parvum to assess whether deformability may be a marker of viability. Our results indicate that untreated and temperature-inactivated C. parvum oocysts had overlapping but significantly different deformability distributions.


Subject(s)
Cryptosporidium parvum/isolation & purification , Cryptosporidium/isolation & purification , Drinking Water/parasitology , Microfluidics/methods , Microscopy, Atomic Force/methods , Elasticity , Humans , Microfluidics/instrumentation , Microscopy, Atomic Force/instrumentation , Oocysts/chemistry , Single-Cell Analysis , Water Purification/instrumentation , Water Purification/methods
2.
Anal Chem ; 86(9): 4078-87, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24670194

ABSTRACT

Isotachophoresis (ITP) and electric field gradient focusing (EFGF) are two powerful approaches for simultaneous focusing and separation of charged compounds. Remarkably, in many EFGF methods, isotachophoretic hallmarks have been found, including observations of plateau concentrations and contiguous analyte bands. We discuss the similarities between ITP and EFGF and describe promising possibilities to transfer the functionality and applications developed on one platform to other platforms. Of particular importance is the observation that single-electrolyte isotachophoretic separations with tunable ionic mobility window can be performed, as is illustrated with the example of depletion zone isotachophoresis (dzITP). By exploiting the rapid developments in micro- and nanofluidics, many interesting combinations of ITP and EFGF features can be achieved, yielding powerful analytical platforms for sample preparation, biomarker discovery, molecular interaction assays, drug screening, and clinical diagnostics.


Subject(s)
Biological Assay , Electricity , Isotachophoresis
3.
Lab Chip ; 13(24): 4810-5, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24158567

ABSTRACT

Elastomeric microvalves in poly(dimethylsiloxane) (PDMS) devices are today's paradigm for massively parallel microfluidic operations. Here, we report that such valves can act as nanochannels upon closure. When tuning nanospace heights between ~55 nm and ~7 nm, the nanofluidic phenomenon of concentration polarization could be induced. A wide range of concentration polarization regimes (anodic and cathodic analyte focusing and stacking) was achieved simply by valve pressure actuation. Electro-osmotic flow generated a counterpressure which also could be used to actuate between concentration polarization regimes. 1000-fold preconcentration of fluorescein was achieved in just 100 s in the anodic focusing regime. After valve opening, a concentrated sample plug could be transported through the valve, though at the cost of some defocusing. Reversible nanochannels open new avenues for integrating electrokinetic operations and assays in large scale integrated microfluidics.


Subject(s)
Dimethylpolysiloxanes , Elastomers , Microfluidic Analytical Techniques/methods , Nanotechnology/methods
4.
Anal Chem ; 84(21): 9065-71, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-23013213

ABSTRACT

We present a novel concept of filtering based on depletion zone isotachophoresis (dzITP). In the micro/nanofluidic filter, compounds are separated according to isotachophoretic principles and simultaneously released selectively along a nanochannel-induced depletion zone. Thus, a tunable low-pass ionic mobility filter is realized. We demonstrate quantitative control of the release of fluorescent compounds through the filter using current and voltage actuation. Two modes of operation are presented. In continuous mode, supply, focusing, and separation are synchronized with continuous compound release, resulting in trapping of specific compounds. In pulsed mode, voltage pulses result in release of discrete zones. The dzITP filter was used to enhance detection of 6-carboxyfluorescein 4-fold over fluorescein, even though it had 250× lower starting concentration. Moreover, specific high-mobility analytes were extracted and enriched from diluted raw urine, using fluorescein as an ionic mobility cutoff marker and as a tracer for indirect detection. Tunable ionic filtering is a simple but essential addition to the capabilities of dzITP as a versatile toolkit for biochemical assays.


Subject(s)
Filtration/methods , Isotachophoresis/methods , Motion
5.
Anal Chem ; 83(20): 7910-5, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21861489

ABSTRACT

Isotachophoretic separations are triggered at the border of a nanochannel-induced ion-depleted zone. This depletion zone acts as a terminating electrolyte and is created by concentration polarization over the nanochannel. We show both continuous and discrete sample injections as well as separation of up to four analytes. Continuous injection of a spacer compound was used for selective analyte elution. Zones were kept focused for over one hour, while shifting less than 700 µm. Moreover, zones could be deliberately positioned in the separation channel and focusing strength could be precisely tuned employing a three-point voltage actuation scheme. This makes depletion zone isotachophoresis (dzITP) a fully controllable single-electrolyte focusing and separation technique. For on-chip electrokinetic methods, dzITP sets a new standard in terms of versatility and operational simplicity.


Subject(s)
Electrolytes/chemistry , Isotachophoresis/methods , Ions/chemistry , Isotachophoresis/instrumentation , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...