Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0303838, 2024.
Article in English | MEDLINE | ID: mdl-38753834

ABSTRACT

This study presents the complete genome sequence of a novel nege-like virus identified in whiteflies (Bemisia tabaci MEAM1), provisionally designated as whitefly negevirus 1 (WfNgV1). The virus possesses a single-stranded RNA genome comprising 11,848 nucleotides, organized into four open reading frames (ORFs). These ORFs encode the putative RNA-dependent-RNA-polymerase (RdRp, ORF 1), a glycoprotein (ORF 2), a structural protein with homology to those in the SP24 family, (ORF 3), and a protein of unknown function (ORF 4). Phylogenetic analysis focusing on RdRp and SP24 amino acid sequences revealed a close relationship between WfNgV1 and Bemisia tabaci negevirus 1, a negevirus sequence recently discovered in whiteflies from Israel. Both viruses form a clade sharing a most recent common ancestor with the proposed nelorpivirus and centivirus taxa. The putative glycoprotein from ORF 2 and SP24 (ORF 3) of WfNgV1 exhibit the characteristic topologies previously reported for negevirus counterparts. This marks the first reported negevirus-like sequence from whiteflies in the Americas.


Subject(s)
Genome, Viral , Hemiptera , Open Reading Frames , Phylogeny , Animals , Hemiptera/virology , Hemiptera/genetics , Open Reading Frames/genetics , Viral Proteins/genetics , RNA, Viral/genetics , Amino Acid Sequence , RNA-Dependent RNA Polymerase/genetics
2.
Plant Dis ; 108(3): 587-591, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37743588

ABSTRACT

The occurrence of Schlumbergera virus X (SchVX) in commercial dragon fruit fields in three provinces of Ecuador has been identified in this study. The virus was found in symptomatic and asymptomatic cladodes of the two major species (Hylocereus undatus and H. megalanthus) cultivated in the country. Symptoms in H. undatus included irregular and ring-shaped chlorotic spots that coalesce into large chlorotic patches along the cladodes, whereas small chlorotic spot symptoms on the cladodes were observed in H. megalanthus. Phylogenetic inferences based on 27 partial nucleotide sequences of the RNA-dependent RNA polymerase (RdRp) and three whole genome comparisons showed that Ecuadorean isolates from H. undatus and H. megalanthus share a most recent ancestor with isolates from Spain and Portugal. In addition, an SchVX isolate with a distinct genomic lineage was found in symptomatic H. polyrhizus plants from a single location, suggesting two independent virus introductions into the country.


Subject(s)
Cactaceae , Phylogeny , Ecuador , Base Sequence
3.
Plants (Basel) ; 12(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37447121

ABSTRACT

Babaco (Vasconcellea x heilbornii), a fruit-bearing vegetatively propagated crop native to Ecuador, is appreciated for its distinctive flavor and nutritional properties. The aim of this research was to determine a functional protocol for tissue culture propagation of virus-free babaco plants including in vitro establishment, multiplication, rooting, and acclimation. First, symptomless babaco plants from a single commercial nursery were analyzed for virus detection and cared for using different disinfection treatments in the greenhouse to reduce contamination during the in vitro establishing step, and three cytokinins, 6-(γ,γ-Dimethylallylamino) purine (2IP), 6-Benzylaminopurine (BAP), and Thidiazuron (TDZ), were used to determine the best hormone for multiplication. The best treatment for plant disinfection was the weekly application of copper sulfate at the greenhouse and a laboratory disinfection using ethanol (EtOH) (70%), Clorox (2%), and a solution of povidone iodine (2.5%), with an 80% survival during in vitro plant establishment. TDZ showed a better multiplication rate when compared with other hormones, and 70% of the rooted plants were successfully acclimated at the greenhouse. Generated plants were virus-free when tested against babaco mosaic virus (BabMV) and papaya ringspot virus (PRSV), two of the most important viruses that can affect babaco. An efficient protocol to produce virus-free babaco plants was elaborated with an integrated use of viral diagnostic tools to ensure the production of healthy start material to farmers.

4.
Viruses ; 15(6)2023 06 16.
Article in English | MEDLINE | ID: mdl-37376679

ABSTRACT

Babaco (Vasconcellea × heilbornii) is a subtropical species in the Caricaceae family. The plant is native to Ecuador and represents an important crop for hundreds of families. The objective of this study was to characterize, at the genomic level, two new babaco viruses identified by high-throughput sequencing. The viruses, an ilarvirus and a nucleorhabdovirus, were found in a symptomatic babaco plant from a commercial nursery in the Azuay province of Ecuador. The tripartite genome of the new ilarvirus, provisionally named babaco ilarvirus 1 (BabIV-1), is related to subgroup 3 ilarviruses, including apple mosaic virus, apple necrotic mosaic virus, and prunus necrotic ringspot virus as the closest relatives. The genome of the nucleorhabdovirus, provisionally named babaco nucleorhabdovirus 1 (BabRV-1), showed the closest relation with joa yellow blotch-associated virus and potato yellow dwarf nucleorhabdovirus. Molecular-based detection methods found BabIV-1 and BabRV-1 in 21% and 36%, respectively, of plants surveyed in a commercial babaco nursery, highlighting the importance of enforcing virus testing and nursery certification programs for babaco.


Subject(s)
Bromoviridae , Caricaceae , Ilarvirus , Rhabdoviridae , Humans , Virome , Ilarvirus/genetics , Plants
5.
Arch Virol ; 168(4): 102, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36877420

ABSTRACT

The complete genomic sequence of a previously uncharacterized virus provisionally named "Bursera graveolens associated totivirus 1" (BgTV-1) was obtained from Bursera graveolens (Kunth) Triana & Planch., a tree known as "palo santo" in Ecuador. The BgTV-1 genome is a monopartite double-stranded RNA (dsRNA) that is 4794 nucleotides (nt) long (GenBank accession number ON988291). Phylogenetic analysis of the capsid protein (CP) and RNA-dependent RNA polymerase (RdRp) placed BgTV-1 in a clade with other plant-associated totiviruses. Amino acid (aa) sequence comparisons of putative BgTV-1 proteins showed the highest sequence similarity to those of taro-associated totivirus L (QFS21890.1-QFS21891.1) and Panax notoginseng virus A (YP_009225664.1- YP_009225665.1), with 51.4% and 49.8% identity, respectively, in the CP and 56.4% and 55.2% identity, respectively, in the RdRp. BgTV-1 was not detected in total RNA from either of the two endophytic fungi cultured from BgTV-1-positive B. graveolens leaves, suggesting that BgTV-1 may be a plant-infecting totivirus. Based on its distinct host and the low aa sequence similarity between the CP of BgTV-1 and its counterparts from the closest relatives, the virus described in this study should be assigned as a new member of the genus Totivirus.


Subject(s)
Bursera , Totivirus , Ecuador , Phylogeny , Capsid Proteins/genetics , RNA, Double-Stranded , RNA-Dependent RNA Polymerase/genetics
6.
Plant Dis ; 107(6): 1649-1663, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36572970

ABSTRACT

Papaya sticky disease (PSD) is a major virus disorder of papaya (Carica papaya). The disease is characterized by fruit damage caused by the oxidation of spontaneously exuded latex. In Brazil, PSD is caused by the coinfection of two viruses, papaya meleira virus (PMeV), a toti-like virus, and papaya meleira virus-2 (PMeV-2), an umbra-like virus. The disorder has also been reported in Mexico and, more recently, in Australia, but the presence of both PMeV and PMeV-2 in symptomatic plants has been documented only in Brazil. In 2021, 2-year-old papaya plants (cultivar Passion Red) exhibiting PSD-like symptoms were observed in Santa Elena Province, Ecuador. Molecular tests of leaf tissue and fruit latex from symptomatic plants failed to detect PMeV. However, papaya virus Q (PpVQ), an umbra-like virus related to but distinct from PMeV-2, and a novel virus, tentatively named papaya sticky fruit-associated virus (PSFaV), were found in the symptomatic samples. PSFaV shares 56% nucleotide identity with the genome of PMeV, suggesting that PSD symptoms can be caused by "couples" of viruses related to but distinct from PMeV (a toti-like virus) and PMeV-2 (an umbra-like virus). This review discusses the history and epidemiology of PSD and the genomic features of newly discovered virus couples involved in this syndrome. Given the unusual etiology of PSD, which involves distinct virus species, the importance of implementing proper diagnostic approaches for PSD is highlighted.


Subject(s)
Carica , Plant Viruses , RNA Viruses , RNA Viruses/genetics , Plant Viruses/genetics , Latex , Plant Leaves
7.
Plants (Basel) ; 11(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35807598

ABSTRACT

Babaco is a fast-growing herbaceous shrub with great commercial potential because of the organoleptic properties of its fruit. Babaco mosaic virus (BabMV) is a potexvirus in the family Alphaflexiviridae affecting babaco in all the provinces that produce this crop in Ecuador. BabMV was recently described but it has been affecting babaco for decades and, since many potexviruses are serologically indistinguishable, it may have been previously misidentified as papaya mosaic virus. Based on the coat protein (CP) gene, we aimed to study the distribution and epidemiological patterns of BabMV in babaco and chamburo over the years and to model its three-dimensional structure. Sequences of the CP were obtained from thirty-six isolates from plants collected in the main babaco-producing provinces of Ecuador between 2016 and 2021. The evolution rate of BabMV was estimated at 1.21 × 10-3 nucleotide substitutions site-1 year-1 and a time of origin of the most recent common ancestor around 1958.80. From molecular dynamics simulations, compared to other proteins of BabMV-RDRP, TGB1, and Alkb domain-the CP exhibited a higher flexibility with the C and N terminals as the most flexible regions. The reconstructed viral distribution provides dispersion patterns which have implications for control approaches of BabMV.

8.
Arch Virol ; 167(10): 2093-2098, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35821148

ABSTRACT

Two new umbravirus-like associated RNAs (ulaRNAs) were found, respectively, in maize and Johnsongrass samples from Ecuador. The complete sequences consist of 3,053 and 3,025 nucleotides, respectively, and contain four open reading frames (ORFs). Their genome sequences were 58% identical to each other and 28 to 60% identical to the most closely related viruses. Phylogenetic analysis using full genome sequences and amino acid sequence of the RNA-dependent-RNA polymerase (RdRp) placed both sequences in a clade sharing the most recent common ancestor with ulaRNAs from sugarcane and maize, suggesting that they belong to a monophyletic grass-infecting lineage. Their terminal regions exhibit features common to umbraviruses and ulaRNAs.


Subject(s)
Sorghum , Tombusviridae , Ecuador , Genome, Viral , Open Reading Frames , Phylogeny , RNA , RNA, Viral/genetics , Tombusviridae/genetics , Zea mays
9.
Phytopathology ; 112(11): 2440-2448, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35694887

ABSTRACT

Two newly described viruses belonging to distinct families, Rhabdoviridae and Geminiviridae, were discovered co-infecting Hyptis pectinata from a tropical dry forest of Ecuador. The negative-sense RNA genome of the rhabdovirus, tentatively named Hyptis latent virus (HpLV), comprises 13,765 nucleotides with seven open reading frames separated by the conserved intergenic region 3'-AAUUAUUUUGAU-5'. Sequence analyses showed identities as high as 56% for the polymerase and 38% for the nucleocapsid to members of the genus Cytorhabdovirus. Efficient transmission of HpLV was mediated by the pea aphid (Acyrthosiphon pisum) in a persistent replicative manner. The single-stranded DNA genome of the virus tentatively named Hyptis golden mosaic virus (HpGMV) shared homology with members of the genus Begomovirus with bipartite genomes. The DNA-A component consists of 2,716 nucleotides (nt), whereas the DNA-B component contains 2,666 nt. Pairwise alignments using the complete genomic sequence of DNA-A of HpGMV and closest relatives showed identities below the cutoff (<91% shared nt) established by the ICTV as species demarcation, indicating that HpGMV should be classified in a distinct begomovirus species. Transmission experiments confirmed that the whitefly Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) is a vector of HpGMV.


Subject(s)
Begomovirus , Hemiptera , Hyptis , Rhabdoviridae , Animals , Hyptis/genetics , Genome, Viral/genetics , Virulence , Plant Diseases , Begomovirus/genetics , Rhabdoviridae/genetics , Insect Vectors , Nucleotides , Phylogeny
10.
Arch Virol ; 167(6): 1461-1466, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35469094

ABSTRACT

A new potyvirus was found in Thevetia ahouai L. (Fam. Apocynaceae) plants exhibiting white spots on leaves and fruit discoloration in Ecuador. The complete genome sequences of two isolates of this virus, tentatively named "thevetia white spot virus" (ThWSV), were determined and found to be 9,912 (isolate 1) and 9,904 (isolate 2) nucleotides (nt) in length, each encoding a polyprotein of 363 kDa. Sequence comparisons between the two isolates showed 80 and 87% identity at the nt and amino acid (aa) level, respectively, whereas the overall sequence identity between ThWSV and its closest relative was 69% and 71% at the nt and aa level, respectively.


Subject(s)
Potyvirus , Thevetia , Ecuador , Genome, Viral , Phylogeny , Plant Diseases , Potyvirus/genetics , RNA, Viral/genetics
11.
Plant Dis ; 106(2): 685-690, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34601954

ABSTRACT

A study was conducted to investigate epidemiological aspects of papaya virus E (PpVE), a cytorhabdovirus commonly found in papaya (Carica papaya L.) plantings in Ecuador. Besides papaya, PpVE was found in three Fabaceae weeds, including Rhynchosia minima, Centrosema plumieri, and Macroptilium lathyroides, the latter being the species with the highest virus prevalence. Greenhouse experiments showed that in M. lathyroides, single infections of PpVE induce only mild leaf mosaic, whereas in mixed infections with cowpea severe mosaic virus, PpVE contributes to severe mosaic. In papaya, PpVE did not induce noticeable symptoms in single or mixed infections with papaya ringspot virus. Transmission experiments confirmed that whiteflies (Bemisia tabaci) transmit PpVE in a semipersistent, nonpropagative manner.


Subject(s)
Carica , Hemiptera , Rhabdoviridae , Animals , Plant Leaves , Virulence
12.
Arch Virol ; 166(8): 2321-2324, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34046760

ABSTRACT

The complete sequence of a new viral RNA from babaco (Vasconcellea × heilbornii) was determined. The genome consisted of 4,584 nucleotides, containing two open reading frames (ORFs 1 and 2), a 9-nt-long noncoding region (NCR) at the 5' terminus, and an unusually long (1,843 nt) NCR at the 3' terminus. The presence of a potential heptameric slippery signal located 12 nt upstream the stop codon of ORF 1 suggests a -1 ribosomal frameshift mechanism for the translation of ORF 2. Sequence comparisons of ORF 2 revealed similarity to the RNA-dependent RNA polymerase (RdRp) of several umbra- and umbra-like viruses. Phylogenetic analysis of the RdRp placed the new virus in a well-supported and cohesive clade that includes umbra-like viruses reported in papaya, citrus, opuntia, maize, and sugarcane hosts. Viruses of this clade share a most recent ancestor with the umbraviruses but have different genomic features. The creation of a new genus within the family Tombusviridae is proposed for the classification of these novel viruses.


Subject(s)
Caricaceae/virology , Tombusviridae/classification , Whole Genome Sequencing/methods , Base Composition , Genome Size , Genome, Viral , Open Reading Frames , Phylogeny , Tombusviridae/genetics , Tombusviridae/isolation & purification
13.
PLoS One ; 16(2): e0241652, 2021.
Article in English | MEDLINE | ID: mdl-33544737

ABSTRACT

A mild isolate of Papaya ringspot virus type-P, abbreviated as PRSV-mild, from Ecuador was sequenced and characterized. The most distinguishing symptom induced by PRSV-mild was gray powder-like leaf patches radiating from secondary veins. In greenhouse experiments, PRSV-mild did not confer durable protection against a severe isolate of the virus (PRSV-sev), obtained from the same field. Furthermore, isolate specific detection in mixed-infected plants showed that PRSV-sev becomes dominant in infections, rendering PRSV-mild undetectable at 90-120 days post superinfection. Virus testing using isolate-specific primers detected PRSV-mild in two out of five surveyed provinces, with 10% and 48% of incidence in Santo Domingo and Los Ríos, respectively. Comparative genomics showed that PRSV-mild lacks two amino acids from the coat protein region, whereas amino acid determinants for asymptomatic phenotypes were not identified. Recombination events were not predicted in the genomes of the Ecuadorean isolates. Phylogenetic analyses placed both PRSV-mild and PRSV-sev in a clade that includes an additional PRSV isolate from Ecuador and others from South America.


Subject(s)
Carica/virology , Plant Diseases/virology , Potyvirus/genetics , Genome, Viral , Phylogeny , Potyvirus/isolation & purification
14.
Phytopathology ; 110(9): 1588-1596, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32370660

ABSTRACT

Tamarillo, or tree tomato (Solanum betaceum), is a perennial small tree or shrub species cultivated in subtropical areas for fresh fruit and juice production. In Ecuador, tamarillo orchards are affected by several viruses, with one previously identified as potato virus Y (PVY); however, the specific strain composition of PVY in tamarillo was not determined. In 2015 and 2016, eight tamarillo plants exhibiting symptoms of leaf drop, mosaic, and mottled fruit were sampled near Tumbaco and Quito, Ecuador. These tamarillo PVY isolates were able to systemically infect tobacco, Nicotiana benthamiana, naranjilla, and tamarillo. Seven of the eight PVY isolates from tamarillo exhibited N-serotype, while one of the PVY isolates studied, Tam15, had no identifiable serotype. One isolate, Tam17, had N-serotype but produced asymptomatic systemic infection in tobacco. In tamarillo, four tamarillo isolates induced mosaic and slight growth retardation and were unable to systemically infect pepper or potato. Tamarillo, on the other hand, was unable to support systemic infection of PVY isolates belonging to the PVYO and PVYEu-N strains. The whole genomes of eight PVY isolates were sequenced from a series of overlapping RT-PCR fragments. Phylogenetically, tamarillo PVY isolates were found to belong to the large PVYN lineage, in a new tamarillo clade. Recombination analysis revealed that these tamarillo PVY isolates represent at least three novel recombinant types not reported before. The combination of the biological and molecular properties found in these eight PVY isolates suggested the existence of a new tamarillo strain of PVY that may have coevolved with S. betaceum.


Subject(s)
Potyvirus , Solanum tuberosum/virology , Solanum , Ecuador , Phylogeny , Plant Diseases
15.
Plant Dis ; 103(9): 2246-2251, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31287777

ABSTRACT

Naranjilla (Solanum quitoense Lam.) and tamarillo (S. betaceum Cav.) are two important perennial solanaceous crops grown in Ecuador for the fresh market and juice production. Viruses infecting tamarillo and naranjilla are currently poorly studied, and no clean stock program exists in Ecuador. Here, we report a new virus, provisionally named as naranjilla mild mosaic virus (NarMMV) (genus Tymovirus, family Tymoviridae), isolated from naranjilla grown in an orchard in Pichincha Province, Ecuador. The complete genome of the virus consists of 6,348 nucleotides and encodes three open reading frames typical for members of the genus Tymovirus. Phylogenetically, Chiltepin yellow mosaic virus, Eggplant mosaic virus, and the recently characterized naranjilla chlorotic mosaic virus (NarCMV) were found to be the closest relatives of NarMMV. Unlike NarCMV, the new virus induced mild mosaic in naranjilla and more severe symptoms in tamarillo. Similar to NarCMV, NarMMV was unable to systemically infect potato. Virus surveys found NarMMV prevalent in naranjilla production areas of two provinces of Ecuador, especially where hybrid cultivars of naranjilla were cultivated. NarMMV was also found in field-grown tamarillo. The new virus cross-reacted with antibodies developed against NarCMV. Hence, this antibody will be useful for its field diagnosis using enzyme-linked immunosorbent assay or immunocapture reverse transcription polymerase chain reaction in future virus-free certification programs.


Subject(s)
Solanum , Tymovirus , Ecuador , Genome, Viral/genetics , Phylogeny , Prevalence , Solanum/virology , Tymovirus/classification , Tymovirus/genetics , Tymovirus/physiology
16.
PLoS One ; 14(6): e0215798, 2019.
Article in English | MEDLINE | ID: mdl-31220099

ABSTRACT

The complete genome of a new rhabdovirus infecting papaya (Carica papaya L.) in Ecuador, named papaya virus E, was sequenced and characterized. The negative-sense single-stranded RNA genome consists of 13,469 nucleotides with six canonical open reading frames (ORFs) and two accessory short ORFs predicted between ORFs corresponding to P3 (movement protein) and M (matrix protein). Phylogenetic analyses using amino acid sequences from the nucleocapsid, glycoprotein and polymerase, grouped the virus with members of the genus Cytorhabdovirus, with rice stripe mosaic virus, yerba mate chlorosis-associated virus and Colocasia bobone disease-associated virus as closest relatives. The 3' leader and 5' trailer sequences were 144 and 167 nt long, respectively, containing partially complementary motifs. The motif 3'-AUUCUUUUUG-5', conserved across rhabdoviruses, was identified in all but one intergenic regions; whereas the motif 3'-ACAAAAACACA-5' was found in three intergenic junctions. This is the first complete genome sequence of a cytorhabdovirus infecting papaya. The virus was prevalent in commercial plantings of Los Ríos, the most important papaya producing province of Ecuador. Recently, the genome sequence of bean-associated cytorhabdovirus was reported. The genome is 97% identical to that of papaya virus E, indicating that both should be considered strains of the same virus.


Subject(s)
Carica/virology , Rhabdoviridae/classification , Whole Genome Sequencing/methods , Carica/genetics , Genome Size , Genome, Viral , High-Throughput Nucleotide Sequencing , Open Reading Frames , Phylogeny , Plant Viruses/genetics , Rhabdoviridae/genetics
17.
Sci Rep ; 8(1): 1173, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29352173

ABSTRACT

Maize chlorotic mottle virus has been rapidly spreading around the globe over the past decade. The interactions of maize chlorotic mottle virus with Potyviridae viruses causes an aggressive synergistic viral condition - maize lethal necrosis, which can cause total yield loss. Maize production in sub-Saharan Africa, where it is the most important cereal, is threatened by the arrival of maize lethal necrosis. We obtained maize chlorotic mottle virus genome sequences from across East Africa and for the first time from Ecuador and Hawaii, and constructed a phylogeny which highlights the similarity of Chinese to African isolates, and Ecuadorian to Hawaiian isolates. We used a measure of clustering, the adjusted Rand index, to extract region-specific SNPs and coding variation that can be used for diagnostics. The population genetics analysis we performed shows that the majority of sequence diversity is partitioned between populations, with diversity extremely low within China and East Africa.


Subject(s)
Gammaherpesvirinae/physiology , Plant Diseases/virology , Base Sequence , Computational Biology/methods , Gammaherpesvirinae/isolation & purification , Genetic Variation , Genome, Viral , Genotype , Geography, Medical , High-Throughput Nucleotide Sequencing , Phylogeny , Polymorphism, Single Nucleotide
18.
Plant Dis ; 102(5): 911-918, 2018 May.
Article in English | MEDLINE | ID: mdl-30673388

ABSTRACT

Naranjilla ("little orange"), also known as lulo (Solanum quitoense Lam.), is a perennial shrub species cultivated in the Andes for fresh fruit and juice production. In 2015, a naranjilla plant exhibiting stunting, mosaic, and chlorotic spots was sampled in the Pastaza province of Ecuador and maintained under greenhouse conditions. An infectious agent was mechanically transmitted to indicator plants and was subjected to biological and molecular characterization. Spherical particles approximately 30 nm in diameter, composed of a single 20-kDa capsid protein, were observed under an electron microscope in infected naranjilla plants. High-throughput sequencing conducted on inoculated Nicotiana benthamiana plants produced a single sequence contig sharing the closest relationship with several tymoviruses. The entire 6,245-nucleotide genome of a new tymovirus was amplified using reverse-transcription polymerase chain reaction and resequenced with the Sanger methodology. The genome had three open reading frames typical of tymoviruses, and displayed a whole-genome nucleotide identity level with the closest tymovirus, Eggplant mosaic virus, at 71% (90% coverage). This tymovirus from naranjilla was able to systemically infect eggplant, tamarillo, N. benthamiana, and naranjilla. In naranjilla, it produced mosaic, chlorotic spots, and stunting, similar to the symptoms observed in the original plant. The virus was unable to infect potato and tobacco and unable to systemically infect pepper plants, replicating only in inoculated leaves. We concluded that this virus represented a new tymovirus infecting naranjilla, and proposed the tentative name Naranjilla chlorotic mosaic virus (NarCMV).


Subject(s)
Plant Diseases/virology , Plant Leaves/virology , Solanum/virology , Tymovirus/genetics , Genome, Viral , Phylogeny
19.
PLoS One ; 12(12): e0189519, 2017.
Article in English | MEDLINE | ID: mdl-29244846

ABSTRACT

A new member of the genus Potexvirus was fully sequenced and characterized. The virus was isolated from babaco (Vasconcellea x heilbornii), a natural hybrid native to Ecuador. The virus contains a 6,692 nt long genome organized in five open reading frames in an arrangement typical of other potexviruses. Sequence comparisons revealed close relatedness with Papaya mosaic virus (PapMV), Alternathera mosaic virus (AltMV) and Senna mosaic virus (SenMV), exhibiting nucleotide identities up to 67% for the polymerase (Pol) and 68% for the coat protein (CP), with deduced amino acid identities of 70% and 72% for the Pol and CP, respectively. The presence of an AlkB domain, in the polymerase region, was observed. Terminal nucleotide sequences were conserved across potexviruses with characteristic motifs and predicted secondary structures at the 3' UTR. Although serologically undistinguishable from PapMV and AltMV, the new virus showed differences in host range and symptom induction. The name babaco mosaic virus is proposed for this newly characterized Potexvirus. The complete genome sequence of the new virus has been deposited in NCBI GenBank under accession number MF978248.


Subject(s)
Magnoliopsida/virology , Potexvirus/genetics , Genes, Viral , Host Specificity , Phylogeny , Potexvirus/isolation & purification , Sequence Analysis, DNA , Viral Proteins/genetics , Viral Tropism
20.
Arch Virol ; 162(4): 1083-1087, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27900468

ABSTRACT

The complete genomic sequence of a variant of the recently reported maize-associated totivirus (MATV) from China was obtained from commercial maize in Ecuador. The genome of MATV-Ec (Ecuador) (4,998 bp) is considerably longer than that of MATV-Ch (China) (3,956 bp), the main difference due to a ≈ 1-kb-long capsid-protein-encoding fragment that is completely absent from the Chinese genome. Sequence alignments between MATV-Ec and MATV-Ch showed an overall identity of 82% at the nucleotide level, whereas at the amino acid level, the viruses exhibited 95% and 94% identity for the putative capsid protein and the RNA-dependent RNA polymerase (RdRp), respectively. Phylogenetic analysis of the viral RdRp domain indicated that MATV-Ec and MATV-Ch share a common ancestor with other plant-associated totiviruses, with Panax notoginseng virus A as the closest relative. MATV-Ec was detected in 46% (n = 80) of maize plants tested in this study, but not in endophytic fungi isolated from plants positive for the virus.


Subject(s)
Genome, Viral , Plant Diseases/virology , Totivirus/genetics , Totivirus/isolation & purification , Zea mays/virology , Amino Acid Sequence , Base Sequence , Molecular Sequence Data , Open Reading Frames , Phylogeny , Sequence Alignment , Totivirus/chemistry , Totivirus/classification , Viral Proteins/chemistry , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...