Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(1)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38257964

ABSTRACT

Transcriptional variation has been studied but post-transcriptional modification due to RNA editing has not been investigated in Plasmodium. We investigated developmental stage-specific RNA editing in selected genes in Plasmodium falciparum 3D7. We detected extensive amination- and deamination-type RNA editing at 8, 16, 24, 32, 40, and 46 h in tightly synchronized Plasmodium. Most of the editing events were observed in 8 and 16 h ring-stage parasites. Extensive A-to-G deamination-type editing was detected more during the 16 h ring stage (25%) than the 8 h ring stage (20%). Extensive U-to-C amination-type editing was detected more during the 16 h ring stage (31%) than the 8 h ring stage (22%). In 28S, rRNA editing converted the loop structure to the stem structure. The hemoglobin binding activity of PF3D7_0216900 was also altered due to RNA editing. Among the expressed 28S rRNA genes, PF3D7_0532000 and PF3D7_0726000 expression was higher. Increased amounts of the transcripts of these two genes were found, particularly PF3D7_0726000 in the ring stage and PF3D7_0532000 in the trophozoite and schizont stages. Adenosine deaminase (ADA) expression did not correlate with the editing level. This first experimental report of RNA editing will help to identify the editing machinery that might be useful for antimalarial drug discovery and malaria control.

2.
Genes (Basel) ; 14(8)2023 08 04.
Article in English | MEDLINE | ID: mdl-37628635

ABSTRACT

Adenosine deaminases acting on RNA (ADARs) have double-stranded RNA binding domains and a deaminase domain (DD). We used the MS2 system and specific guide RNAs to direct ADAR1-DD to target adenosines in the mRNA encoding-enhanced green fluorescence protein. Using this system in transfected HEK-293 cells, we evaluated the effects of changing the length and position of the guide RNA on the efficiency of conversion of amber (TAG) and ochre (TAA) stop codons to tryptophan (TGG) in the target. Guide RNAs of 19, 21 and 23 nt were positioned upstream and downstream of the MS2-RNA, providing a total of six guide RNAs. The upstream guide RNAs were more functionally effective than the downstream guide RNAs, with the following hierarchy of efficiency: 21 nt > 23 nt > 19 nt. The highest editing efficiency was 16.6%. Off-target editing was not detected in the guide RNA complementary region but was detected 50 nt downstream of the target. The editing efficiency was proportional to the amount of transfected deaminase but inversely proportional to the amount of the transfected guide RNA. Our results suggest that specific RNA editing requires precise optimization of the ratio of enzyme, guide RNA, and target RNA.


Subject(s)
Adenosine , RNA Editing , Humans , HEK293 Cells , RNA Editing/genetics , Hydrolases , RNA
3.
Curr Gene Ther ; 19(1): 31-39, 2019.
Article in English | MEDLINE | ID: mdl-30426900

ABSTRACT

INTRODUCTION: Members of the adenosine deaminase acting on RNA (ADAR) family of enzymes consist of double-stranded RNA-binding domains (dsRBDs) and a deaminase domain (DD) that converts adenosine (A) into inosine (I), which acts as guanosine (G) during translation. Using the MS2 system, we engineered the DD of ADAR1 to direct it to a specific target. The aim of this work was to compare the deaminase activities of ADAR1-DD and various isoforms of ADAR2-DD. MATERIALS AND METHODS: We measured the binding affinity of the artificial enzyme system on a Biacore ™ X100. ADARs usually target dsRNA, so we designed a guide RNA complementary to the target RNA, and then fused the guide sequence to the MS2 stem-loop. A mutated amber (TAG) stop codon at 58 amino acid (TGG) of EGFP was targeted. After transfection of these three factors into HEK 293 cells, we observed fluorescence signals of various intensities. RESULTS: ADAR2-long without the Alu-cassette yielded a much higher fluorescence signal than ADAR2-long with the Alu-cassette. With another isoform, ADAR2-short, which is 81 bp shorter at the C-terminus, the fluorescence signal was undetectable. A single amino acid substitution of ADAR2-long-DD (E488Q) rendered the enzyme more active than the wild type. The results of fluorescence microscopy suggested that ADAR1-DD is more active than ADAR2-long-DD. Western blots and sequencing confirmed that ADAR1-DD was more active than any other DD. CONCLUSION: This study provides information that should facilitate the rational use of ADAR variants for genetic restoration and treatment of genetic diseases.


Subject(s)
Adenosine Deaminase/metabolism , Genetic Code , Genetic Therapy , RNA Editing , RNA-Binding Proteins/metabolism , RNA/metabolism , Adenosine Deaminase/genetics , HEK293 Cells , Humans , Protein Isoforms , RNA/genetics , RNA-Binding Proteins/genetics
4.
Biosci Trends ; 12(6): 569-579, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30555111

ABSTRACT

Alternative splicing is a post- and co-transcriptional regulatory mechanism of gene expression. Pentatricopeptide repeat (PPR) family proteins were recently found to be involved in RNA editing in plants. The aim of this study was to investigate the tissue-specific expression and alternative splicing of PPR family genes and their effects on protein structure and functionality. Of the 27 PPR genes in Arabidopsis thaliana, we selected six PPR genes of the P subfamily that are likely alternatively spliced, which were confirmed by sequencing. Four of these genes show intron retention, and the two remaining genes have 3' alternative-splicing sites. Alternative-splicing events occurred in the coding regions of three genes and in the 3' UTRs of the three remaining genes. We also identified five previously unannotated alternatively spliced isoforms of these PPR genes, which were confirmed by PCR and sequencing. Among these, three contain 3' alternative-splicing sites, one contains a 5' alternative-splicing site, and the remaining gene contains a 3'-5' alternative-splicing site. The new isoforms of two genes affect protein structure, and three other alternative-splicing sites are located in 3' UTRs. These findings suggest that tissue-specific expression of different alternatively spliced transcripts occurs in Arabidopsis, even at different developmental stages.


Subject(s)
Alternative Splicing , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Genes, Plant/genetics , RNA, Messenger/genetics , Organ Specificity/genetics , RNA Editing
SELECTION OF CITATIONS
SEARCH DETAIL
...