Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Biosci ; 37(3): 500-508, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36915928

ABSTRACT

OBJECTIVE: Due to current selection practices for increased egg production and peak persistency, the production profile, age at maturity, and body weight criteria for commercial layers are constantly changing. Body weight and age at the time of photostimulation will thus always be the factors that need to be adequately addressed among various production systems. The current study was carried out to determine the effects of pullets' body weight (low, medium, and heavy) on their performance, welfare, physiological response, and hormonal profile. METHODS: With regard to live weight, 150 16-week-old pullets were divided into three groups using a completely randomized design (CRD) and held until the 50th week. One-way analysis of variance was used to evaluate the data under the CRD, and the least significant difference test was used to distinguish between treatment means. RESULTS: In comparison to the medium and light birds, the heavy birds had higher body weight at maturity, an earlier age at maturity, and higher egg weight, eggshell weight, eggshell thickness, egg yolk index, breaking strength, egg surface area, egg shape index, egg volume, and hormonal profile except corticosterone. However, the medium and light birds had lower feed consumption rates per dozen eggs and per kilogram of egg mass than the heavy birds. Light birds showed greater body weight gain, egg production, and egg specific gravity than the other categories. At 20 weeks of age, physiological response, welfare aspects, and catalase were non-significant; however, at 50 weeks of age, all these factors-aside from catalase-were extremely significant. CONCLUSION: The findings of this study indicate that layers can function at lower body weights during photostimulation; hence, dietary regimens that result in lighter pullets may be preferable. Additionally, the welfare of the birds was not compromised by the lighter weight group.

2.
J Therm Biol ; 114: 103608, 2023 May.
Article in English | MEDLINE | ID: mdl-37329840

ABSTRACT

Dairy cows increase heat loads when the temperature-humidity index (THI) value is elevated in the ambient environments. This condition often occurs in the tropical areas due to a higher THI rate throughout seasons. The major objective of the study was to investigate the different responses in milk yield and composition, chewing activities, and health parameters in dairy cows under the dry and wet seasons of tropical climate zone in Indonesia. Twenty mid-lactating Indonesian Holstein-Friesian cows (139.3 ± 24.63 DIM; 10 primiparous and 10 multiparous; 441 ± 21.5 kg BW) were randomly subjected to 2 groups, dairy cows under dry (n = 10) and wet season (n = 10). Both groups received the same diets throughout the experiment. To determine the heat stress condition, the THI values were recorded daily. Overall, a higher number of THI was more pronounced in wet season. A lower dry matter intake (DMI) and milk yield were observed in wet season group. A tendency towards higher milk protein contents was found in dairy cows under dry season compared to cows under wet season. The other milk compositions such as fat, lactose, and SNF remained unchanged in both dry and wet season groups. The comparison between both groups at several time points of eating and ruminating time revealed significantly higher in cows under dry season. Overall, a higher chewing per bolus was observed in cows under dry season than their counterparts. Furthermore, a tendential greater extent rectal temperature pointed in the wet season group compared to the dry season group relatively. Data suggest that a stronger heat stress condition in wet season was more pronounced compared to dry season, with adversely affecting stronger declined DMI, milk yield, and chewing activities of dairy cows.


Subject(s)
Heat Stress Disorders , Lactation , Animals , Cattle , Female , Animal Feed/analysis , Diet/veterinary , Eating , Heat Stress Disorders/veterinary , Lactation/physiology , Mastication , Milk/metabolism , Tropical Climate
3.
Poult Sci ; 99(11): 5625-5636, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33142480

ABSTRACT

L-theanine (γ-Glutamylethylamide) is a nonprotein water soluble amino acid (AA) mostly found in leaves of Camellia sinensis (green tea). This is a key component of green tea and is considered as the most abundant form of total AAs in green tea (i.e., about 50%). L-theanine is an exclusive taste ingredient of tea producing an attractive flavor and aroma in tea. It has biological effects such as antioxidant, growth promoter, immune booster, anti-stresser, hepatoprotective, antitumor, antiaging, antimicrobial, anti-inflammatory, and antianxiety activities that are worth noticing. It could reduce the oxidative impairment by reducing the synthesis of reactive oxygen species, oxidative parameters, and lipid damage as well as increasing the activity of antioxidant enzymes. The oral ingestion of L-theanine enhanced γδ T-cell proliferation. Therefore, it is being considered an essential compound of green tea that has the ability to improve immune function. The L-theanine can be used as a potential treatment for hepatic injury and immune-related liver diseases via the downregulation of the inflammatory response through the initiation of nitric oxide synthesis and glutathione production which are likely to be critical for the control of hepatic diseases as well as for the improvement of immune function. In addition, it could be used as a best natural feed additive with a potent antistressor by decreasing the levels of corticosterone, dopamine, and noradrenaline. After systematically reviewing the literature, it is noticed that most studies were carried out on mice, pig, human, and butterfly; while dietary supplementation studies of L-theanine in animal and poultry especially among broilers are very limited because of less awareness of this AA. So, the aim of this review is to encourage the veterinarian and poultry researchers to conduct more research at the molecular level about this AA to expose its more beneficial effects and its mechanism of absorption for potential use of this unique green tea AA in poultry nutrition.


Subject(s)
Animal Nutritional Physiological Phenomena , Glutamates , Poultry , Amino Acids/immunology , Animals , Chickens , Diet/veterinary , Glutamates/immunology , Mice , Poultry/immunology , Swine
4.
PLoS One ; 11(10): e0164192, 2016.
Article in English | MEDLINE | ID: mdl-27716806

ABSTRACT

Short-chain fatty acids (SCFAs) and lactate are endproducts of rumen fermentation and important energy sources for the host ruminant. Because their rapid accumulation results in ruminal acidosis, enhancement of the absorption of SCFA and lactate across reticuloruminal wall is instrumental in increasing energy supply and preventing ruminal acidosis in cattle. This study investigated whether the reticuloruminal absorption of SCFAs and lactate was altered by different strategies of high concentrate feeding. Eight rumen-cannulated, non-lactating Holstein cows were fed a forage-only diet (baseline) and then gradually adapted over 6 d to a 60% concentrate level. Thereafter, this concentrate-rich diet was fed for 4 wk either continuously (Con; n = 8) or interruptedly (Int; n = 8). Absorption of SCFAs and lactate was determined in vivo from the experimental buffer introduced into the washed reticulorumen. The buffer contained acetate, propionate, butyrate and lactate at a concentration of 60, 30, 10 and 5 mmol/L, respectively and Cr-EDTA as a marker for correcting ruminal water fluxes. The reticuloruminal absorption after 35 and 65 min of buffer incubation was measured at the baseline, after 1 wk of 60% concentrate feeding in the interrupted model (Int-1) and after 4 wk of concentrate feeding in both feeding models (Int-4 and Con-4). Data showed that the absorption rates of individual and total SCFAs during the first 35 min of incubation of Con-4 were highest (~1.7 times compared to baseline), while Int-1 and Int-4 were similar to respective baseline. Lactate was not absorbed during forage-only baseline and 1-wk concentrate feeding, but after 4-wk feeding of concentrates in both models. In conclusion, SCFAs absorption across the reticulorumen of non-lactating cattle was enhanced by the 4-wk continuous concentrate feeding, which seems to be more advantageous in terms of rumen acidosis prevention compared to the interrupted feeding model. The study provides evidence of lactate absorption across the reticulorumen of non-lactating cattle after both continuous and interrupted 4-wk concentrate feeding.


Subject(s)
Fatty Acids, Volatile/metabolism , Lactic Acid/metabolism , Rumen/metabolism , Acidosis/metabolism , Animal Feed , Animal Nutritional Physiological Phenomena/physiology , Animals , Cattle , Cross-Over Studies , Diet , Feeding Behavior/physiology , Female , Lactation/metabolism
5.
Front Microbiol ; 7: 274, 2016.
Article in English | MEDLINE | ID: mdl-26973642

ABSTRACT

The impact of a long-term subacute rumen acidosis (SARA) on the bovine epimural bacterial microbiome (BEBM) and its consequences for rumen health is poorly understood. This study aimed to investigate shifts in the BEBM during a long-term transient SARA model consisting of two concentrate-diet-induced SARA challenges separated by a 1-week challenge break. Eight cows were fed forage and varying concentrate amounts throughout the experiment. In total, 32 rumen papilla biopsies were taken for DNA isolation (4 sampling time points per cow: at the baseline before concentrate was fed, after the first SARA challenge, after the challenge break, and after the second SARA challenge). Ruminal pH was continuously monitored. The microbiome was determined using Illumina MiSeq sequencing of the 16S rRNA gene (V345 region). In total 1,215,618 sequences were obtained and clustered into 6833 operational taxonomic units (OTUs). Campylobacter and Kingella were the most abundant OTUs (16.5 and 7.1%). According to ruminal pH dynamics, the second challenge was more severe than the first challenge. Species diversity estimates and evenness increased during the challenge break compared to all other sampling time points (P < 0.05). During both SARA challenges, Kingella- and Azoarcus-OTUs decreased (0.5 and 0.4 fold-change) and a dominant Ruminobacter-OTU increased during the challenge break (18.9 fold-change; P < 0.05). qPCR confirmed SARA-related shifts. During the challenge break noticeably more OTUs increased compared to other sampling time points. Our results show that the BEBM re-establishes the baseline conditions slower after a SARA challenge than ruminal pH. Key phylotypes that were reduced during both challenges may help to establish a bacterial fingerprint to facilitate understanding effects of SARA conditions on the BEBM and their consequences for the ruminant host.

SELECTION OF CITATIONS
SEARCH DETAIL
...