Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 15(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-37104203

ABSTRACT

Snakebite envenoming is a neglected tropical disease prevalent in South Asia. In Pakistan, antivenoms are commonly imported from India despite the controversy over their effectiveness. To solve the problem, the locals have developed the Pakistani Viper Antivenom (PVAV), raised against Sochurek's Saw-scaled Viper (Echis carinatus sochureki) and Russell's Viper (Daboia russelii) of Pakistani origin. This study is set to evaluate the composition purity, immuno-specificity and neutralization efficacy of PVAV. Chromatographic and electrophoretic profiling coupled with proteomic mass spectrometry analysis showed PVAV containing high-purity immunoglobulin G with minimum impurities, notably the absence of serum albumin. PVAV is highly immuno-specific toward the venoms of the two vipers and Echis carinatus multisquamatus, which are indigenous to Pakistan. Its immunoreactivity, however, reduces toward the venoms of other Echis carinatus subspecies and D. russelii from South India as well as Sri Lanka. Meanwhile, its non-specific binding activities for the venoms of Hump-nosed Pit Vipers, Indian Cobras and kraits were extremely low. In the neutralization study, PVAV effectively mitigated the hemotoxic and lethal effects of the Pakistani viper venoms, tested in vitro and in vivo. Together, the findings suggest the potential utility of PVAV as a new domestic antivenom for the treatment of viperid envenoming in Pakistan.


Subject(s)
Daboia , Snake Bites , Viperidae , Animals , Antivenins/pharmacology , Pakistan , Proteomics , Snake Bites/drug therapy , Viper Venoms/toxicity
2.
Sci Rep ; 10(1): 11261, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32647261

ABSTRACT

Snakebite envenomation is a neglected tropical disease of high mortality and morbidity largely due to insufficient supply of effective and affordable antivenoms. Snake antivenoms are mostly effective against the venoms used in their production. It is thus crucial that effective and affordable antivenom(s) with wide para-specificity, capable of neutralizing the venoms of a large number of snakes, be produced. Here we studied the pan-specific antiserum prepared previously by a novel immunization strategy involving the exposure of horses to a 'diverse toxin repertoire' consisting of 12 neurotoxic Asian snake toxin fractions/ venoms from six species. This antiserum was previously shown to exhibit wide para-specificity by neutralizing 11 homologous and 16 heterologous venoms from Asia and Africa. We now show that the antiserum can neutralize 9 out of 10 additional neurotoxic venoms. Altogether, 36 snake venoms belonging to 10 genera from 4 continents were neutralized by the antiserum. Toxin profiles previously generated using proteomic techniques of these 36 venoms identified α-neurotoxins, ß-neurotoxins, and cytotoxins as predominant toxins presumably neutralized by the antiserum. The bases for the wide para-specificity of the antiserum are discussed. These findings indicate that it is feasible to generate antivenoms of wide para-specificity against elapid neurotoxic venoms from different regions in the world and raises the possibility of a universal neurotoxic antivenom. This should reduce the mortality resulting from neurotoxic snakebite envenomation.


Subject(s)
Antivenins/chemistry , Elapid Venoms/chemistry , Immunization , Neurotoxins/chemistry , Animals , Elapidae , Immune Sera , Proteomics , Snake Venoms , Snakes , Vaccination
3.
J Proteomics ; 193: 243-254, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30385415

ABSTRACT

The proteome of the Pakistani B. sindanus venom was investigated with reverse-phase HPLC and nano-ESI-LCMS/MS analysis. At least 36 distinct proteins belonging to 8 toxin protein families were identified. Three-finger toxin (3FTx), phospholipase A2 (including ß-bungarotoxin A-chains) and Kunitz-type serine protease inhibitor (KSPI) were the most abundant, constituting ~95% of total venom proteins. The other toxin proteins of low abundance are snake venom metalloproteinase (SVMP), L-amino acid oxidase (LAAO), acetylcholinesterase (AChE), vespryn and cysteine-rich secretory protein (CRiSP). The venom was highly lethal to mice with LD50 values of 0.04 µg/g (intravenous) and 0.15 µg/g (subcutaneous). The 3FTx proteins are diverse, comprising kappa-neurotoxins, neurotoxin-like protein, non-conventional toxins and muscarinic toxin-like proteins. Kappa-neurotoxins and ß-bungarotoxins represent the major toxins that mediate neurotoxicity in B. sindanus envenoming. Alpha-bungarotoxin, commonly present in the Southeast Asian krait venoms, was undetected. The Indian VINS Polyvalent Antivenom (VPAV) was immunoreactive toward the venom, and it moderately cross-neutralized the venom lethality (potency = 0.25 mg/ml). VPAV was able to reverse the neurotoxicity and prevent death in experimentally envenomed mice, but the recovery time was long. The unique toxin composition of B. sindanus venom may be considered in the formulation of a more effective pan-regional, polyspecific antivenom. BIOLOGICAL SIGNIFICANCE: Bungarus sindanus, an endemic krait species distributed mainly in the Sindh Province of Pakistan is a cause of snake envenomation. Its specific antivenom is, however, lacking. The proteomic study of its venom revealed a substantial presence of κ-bungarotoxins and ß-bungarotoxins. The toxin profile corroborates the potent neurotoxicity and lethality of the venom tested in vivo. The heterologous Indian VINS polyvalent antivenom (VPAV) cross-reacted with B. sindanus venom and cross-neutralized the venom neurotoxicity and lethality in mice, albeit the efficacy was moderate. The findings imply that B. sindanus and the phylogenetically related B. caeruleus of India share certain venom epitopes. Research should be advanced to improve the efficacy spectrum of a pan-regional polyspecific antivenom.


Subject(s)
Antivenins , Bungarotoxins , Bungarus/metabolism , Proteome , Animals , Antivenins/chemistry , Antivenins/pharmacology , Bungarotoxins/antagonists & inhibitors , Bungarotoxins/metabolism , Bungarotoxins/toxicity , Cross Reactions , Mice , Pakistan , Proteome/antagonists & inhibitors , Proteome/metabolism , Proteome/toxicity
4.
J Proteomics ; 183: 1-13, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29729992

ABSTRACT

The venom proteome of wild Pakistani Russell's viper (Daboia russelii) was investigated through nano-ESI-LCMS/MS of the reverse-phase HPLC fractions. A total of 54 venom proteins were identified and clustered into 11 protein families. Phospholipase A2 (PLA2, 63.8%) and Kunitz-type serine protease inhibitor (KSPI, 16.0%) were most abundant, followed by snake venom serine protease (SVSP, 5.5%, mainly Factor V activating enzyme), vascular endothelial growth factor (VEGF, 4.3%), snake venom metalloproteinase (SVMP, 2.5%, mainly Factor X activating enzyme) and phosphodiesterase (PDE, 2.5%). Other minor proteins include cysteine-rich secretory protein (CRiSP), snake venom C-type lectin/lectin-like protein (snaclec), nerve growth factor, L-amino acid oxidase and 5'-nucleotidase. PLA2, KSPI, SVSP, snaclec and SVMP are hemotoxic proteins in the venom. The study indicated substantial venom variation in D. russelii venoms of different locales, including 3 Pakistani specimens kept in the USA. The venom exhibited potent procoagulant activity on human plasma (minimum clotting dose = 14.5 ng/ml) and high lethality (rodent LD50 = 0.19 µg/g) but lacked hemorrhagic effect locally. The Indian VINS Polyvalent Antivenom bound the venom immunologically in a concentration-dependent manner. It moderately neutralized the venom procoagulant and lethal effects (normalized potency against lethality = 2.7 mg venom neutralized per g antivenom). BIOLOGICAL SIGNIFICANCE: Comprehensive venom proteomes of D. russelii from different locales will facilitate better understanding of the geographical variability of the venom in both qualitative and quantitative terms. This is essential to provide scientific basis for the interpretation of differences in the clinical presentation of Russell's viper envenomation. The study revealed a unique venom proteome of the Pakistani D. russelii from the wild (Indus Delta), in which PLA2 predominated (~60% of total venom proteins). The finding unveiled remarkable differences in the venom compositions between the wild (present study) and the captive specimens reported previously. The integration of toxicity tests enabled the correlation of the venom proteome with the envenoming pathophysiology, where the venom showed potent lethality mediated through coagulopathic activity. The Indian VINS Polyvalent Antivenom (VPAV) showed binding activity toward the venom protein antigens; however the immunorecognition of small proteins and PLA2-dominating fractions was low to moderate. Consistently, the antivenom neutralized the toxicity of the wild Pakistani Russell's viper venom at moderate efficacies. Our results suggest that it may be possible to enhance the Indian antivenom potency against the Pakistani viper venom by the inclusion of venoms from a wider geographical range including that from Pakistan into the immunogen formulation.


Subject(s)
Antivenins/chemistry , Daboia , Viper Venoms/chemistry , Animals , Animals, Wild , Metalloproteases/analysis , Pakistan , Phospholipases A2/analysis , Phosphoric Diester Hydrolases/analysis , Proteomics/methods , Serine Proteinase Inhibitors/analysis , Vascular Endothelial Growth Factor A/analysis , Viper Venoms/enzymology
5.
J Proteomics ; 175: 156-173, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29278784

ABSTRACT

Naja naja is a medically important species that is distributed widely in South Asia. Its venom lethality and neutralization profile have been reported to vary markedly, but the understanding of this phenomenon has been limited without a comprehensive venom profile for the Pakistani N. naja. This study set to investigate the venom proteome of Pakistani N. naja applying reverse-phase HPLC, SDS-PAGE, mass spectrometry and data-mining approaches. The venom enzymatics and antigen binding activities were also studied. A total of 55 venom proteins comprising 11 toxin families were identified, with three-finger toxins (75.29%) being the predominant component, followed by phospholipase A2 (14.24%) and other proteins (<5%). The enzyme activities of most of the venom components were also detected in this work. The high abundance of long neurotoxins (LNTX, 21.61%) in the Pakistani N. naja venom is varied from that reported for N. naja venoms from other geographical origins. The venom exhibited high immunoreactivity toward Naja kaouthia monovalent antivenom (NKMAV), which was raised against the LNTX-predominated heterologous Thai N. kaouthia venom. Together, the findings show that the Pakistani N. naja venom is predominated by LNTX, and this unique property correlates with its high lethality and effective neutralization by the heterologous NKMAV. BIOLOGICAL SIGNIFICANCE: This study reveals the compositional details of the venom proteome of Pakistani spectacled cobra (Naja naja). The protein subtypes, proteoforms, and relative abundances of individual proteins were comprehensively revealed in this study, following a venom decomplexing proteomic approach. The Pakistani cobra venom is unique among the rest of the N. naja venom composition reported thus far, as it contains a high abundance of alpha-neurotoxins (predominated by long neurotoxins); these are highly potent post-synaptic neuromuscular blockers that cause paralysis and are principal toxins that account for the high lethality of the venom (LD50=0.2µg/g in mice). In contrast, previous reports showed that the N. naja venoms of India and Sri Lanka had a lower content of neurotoxins and a relatively higher value of LD50. The Pakistani cobra venom demonstrated sufficient immunoreactivity toward three antivenom products manufactured outside Pakistan (including the Indian product VINS), however the potency of antigen binding was the highest toward Naja kaouthia monovalent antivenom, a heterologous antivenom raised against a long neurotoxin-predominated venom of the Thai monocled cobra. From the practical standpoint, the findings indicate that the treatment of N. naja envenomation in Pakistan may be improved by the production of a locale-specific antivenom, in which the antivenom produced contains more antibodies that can target and react more specifically with the highly abundant lethal neurotoxins in the Pakistani N. naja venom.


Subject(s)
Elapid Venoms/chemistry , Naja naja , Proteome/analysis , Proteomics/methods , Animals , Antivenins , Biological Variation, Population , Elapid Venoms/analysis , Geography , Neurotoxins/analysis , Pakistan , Phospholipases A2/analysis , Toxins, Biological/analysis
6.
J Proteomics ; 164: 1-18, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28476572

ABSTRACT

The Indian krait (Bungarus caeruleus) is one of the "Big Four" venomous snakes widely distributed in South Asia. The present venomic study reveals that its venom (Sri Lankan origin) is predominated by phospholipases A2 (64.5% of total proteins), in which at least 4.6% are presynaptically-acting ß-bungarotoxin A-chains. Three-finger toxins (19.0%) are the second most abundant, comprising 15.6% κ-neurotoxins, the potent postsynaptically-acting long neurotoxins. Comparative chromatography showed that venom samples from Sri Lanka, India and Pakistan did not exhibit significant variation. These venoms exhibited high immunoreactivity toward VINS Indian Polyvalent Antivenom (VPAV). The Pakistani krait venom, however, had a relatively lower degree of binding, consistent with its moderate neutralization by VPAV (potency=0.3mg venom neutralized per ml antivenom) while the Sri Lankan and Indian venoms were more effectively neutralized (potency of 0.44 mg/ml and 0.48 mg/ml, respectively). Importantly, VPAV was able to neutralize the Sri Lankan and Indian venoms to a comparable extent, supporting its use in Sri Lanka especially in the current situation where Sri Lanka-specific antivenom is unavailable against this species. The findings also indicate that the Pakistani B. caeruleus venom is immunologically less comparable and should be incorporated in the production of a pan-regional, polyspecific antivenom. BIOLOGICAL SIGNIFICANCE: The Indian krait or blue krait, Bungarus caeruleus, is a highly venomous snake that contributes to the snakebite envenoming problem in South Asia. This is a less aggressive snake species but its accidental bite can cause rapid and severe neurotoxicity, in which the patient may succumb to paralysis, respiratory failure and death within a short frame of time. The proteomic analysis of its venom (sourced from Sri Lanka) unveils its content that well correlates to its envenoming pathophysiology, driven primarily by the abundant presynaptic and postsynaptic neurotoxins (ß-bungarotoxins and κ-neurotoxins, respectively). The absence of cytotoxins in the venom proteome also correlates with the lack of local envenoming sign (pain, swelling), and explains why the bite may be insidious until later stage when paralysis sets in. The muscarinic toxin-like proteins in the venom may be the cause of severe abdominal pain that precedes paralysis in many cases, and justifies the need of closely monitoring this symptom in suspected cases. Venom samples from Sri Lanka, India and Pakistan exhibited no remarkable variation in protein profiling and reacted immunologically toward the VINS Indian Polyvalent Antivenom, though to a varying extent. The antivenom is effective in neutralizing the Sri Lankan and Indian venoms, confirming its clinical use in the countries. The antivenom efficacy against the Pakistani venom, however, may be further optimized by incorporating the Pakistani venom in the antivenom production.


Subject(s)
Antivenins/chemistry , Bungarotoxins/chemistry , Bungarus , Animals , Antivenins/immunology , Bungarotoxins/immunology , India , Pakistan , Species Specificity , Sri Lanka
7.
J Pak Med Assoc ; 58(6): 325-31, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18988393

ABSTRACT

Although the snakebite mortality numbers for Pakistan are over estimated, snakebite remains a significant problem of rural areas. Significant improvements are possible with locally developed protocols incorporating the latest research. The use of simple reliable diagnostic tools in managing viperine envenomation and the introduction of monitoring cycles based on physiological criteria can greatly improve outcome. The acquisition by hospitals, even the most basic, of inexpensive drugs and simple readily improvisable equipment can dramatically improve patient survival in neurotoxic, particularly cobra envenomation. Basic hospitals can intervene in snakebite management and this is essential if envenomed victims are to be treated early. This paper makes recommendations as to the basic drug and equipment profile to enable all hospitals to successfully manage snakebite in Pakistan.


Subject(s)
Antivenins/therapeutic use , First Aid/instrumentation , Neurotoxicity Syndromes/etiology , Snake Bites/complications , Animals , Emergency Medical Services , Humans , Neurotoxicity Syndromes/prevention & control , Pakistan , Snake Bites/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...