Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 127(16): 3728-3735, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37053031

ABSTRACT

There is a fundamental issue with the use of dynamic nuclear polarization (DNP) to enhance nuclear spin polarization: the same polarizing agent (PA) needed for DNP is also responsible for shortening the lifetime of the hyperpolarization. As a result, long-term storage and transport of hyperpolarized samples is severely restricted and the apparatus for DNP is necessarily located near or integrated with the apparatus using the hyperpolarized spins. In this paper, we demonstrate that naphthalene single crystals can serve as a long-lived reservoir of proton polarization that can be exploited to enhance signals in benchtop and high-field NMR of target molecules in solution at a site 300 km away by a factor of several thousand. The naphthalene protons are polarized using short-lived optically excited triplet states of pentacene instead of stable radicals. In the absence of optical excitation, the electron spins remain in a singlet ground state, eliminating the major pathway of nuclear spin-lattice relaxation. The polarization decays with a time constant of about 50 h at 80 K and 0.5 T or above 800 h at 5 K and 20 mT. A module based on a Halbach array yielding a field of 0.75 T and a conventional cryogenic dry shipper, operating at liquid nitrogen temperature, allows storage and long distance transport of the polarization to a remote laboratory, where the polarization of the crystal is transferred after dissolution to a target molecule of choice by intermolecular cross-relaxation. The procedure has been executed repeatedly and has proven to be reliable and robust.

2.
J Am Chem Soc ; 144(6): 2511-2519, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35113568

ABSTRACT

Nuclear spin hyperpolarization provides a promising route to overcome the challenges imposed by the limited sensitivity of nuclear magnetic resonance. Here we demonstrate that dissolution of spin-polarized pentacene-doped naphthalene crystals enables transfer of polarization to target molecules via intermolecular cross-relaxation at room temperature and moderate magnetic fields (1.45 T). This makes it possible to exploit the high spin polarization of optically polarized crystals, while mitigating the challenges of its transfer to external nuclei. With this method, we inject the highly polarized mixture into a benchtop NMR spectrometer and observe the polarization dynamics for target 1H nuclei. Although the spectra are radiation damped due to the high naphthalene magnetization, we describe a procedure to process the data to obtain more conventional NMR spectra and extract the target nuclei polarization. With the entire process occurring on a time scale of 1 min, we observe NMR signals enhanced by factors between -200 and -1730 at 1.45 T for a range of small molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...