Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Int J Biol Macromol ; 250: 126275, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37567541

ABSTRACT

In the current study, hydrogels for the controlled release of diclofenac sodium were synthesized from graphene oxide-reinforced guar gum and poly (N-vinyl-2-pyrrolidone) using the Solution Casting Technique. Varying concentrations of 3-Glycidyloxypropyl trimethoxysilane (GLYMO) were employed for the crosslinking of hydrogels. Further, the characterization of hydrogels was carried out using different techniques such as Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction, thermal analysis and scanning electron microscope. The FTIR investigations reveals particular functionalities and development of hydrogel interfaces. While thermal analysis prophesied that, improvement in forces among hydrogel components is directly proportional to the GLYMO concentration. In-vitro biodegradation test and cell viability assay against HEK-293 cell lines confirmed their biodegradable and biocompatible nature. GPG-32 demonstrated maximum antibacterial activity against P.aeruginosa and E.coli strains. The maximum swelling 2001 % and 1814 % in distilled water were recorded for GPG (control) and GPG-8 respectively that obeyed Fick's law. Hydrogels displayed high swelling responses at pH 6 in buffer and non-buffer solutions. In 2.5 h, 88.7 % diclofenac sodium was released which was determined by UV visible spectrophotometer. In conclusion, guar gum-based non-toxic, biocompatible and biodegradable hydrogels would be a model platform for targeting inflammation and pains. Furthermore, improved mechanical and viscoelastic behavior of hydrogels could also be explored for making drug loaded dressings for wound healing applications.

2.
Int J Biol Macromol ; 242(Pt 3): 124948, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37224895

ABSTRACT

In the current study, chitosan, poly (N-vinyl-2-pyrolidone) and polyamidoamine based hydrogels were prepared by Solution Casting Method using different quantity of graphene oxide (GO) for controlled cephradine (CPD) release. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, thermal analysis, scanning electron microscope and atomic force microscopy. FTIR results endorsed the presence of particular functionalities and developed interfaces in hydrogels. The thermal stability was directly proportional to the amount of GO. Antibacterial activity was investigated against gram-negative bacteria resultantly; CAD-2 exhibited maximum bactericidal activity against Escherichia coli and Psuedomonas aeruginosa. In addition, in-vitro biodegradation was examined in phosphate buffer saline solution and proteinase K for 21 and 07 days respectively. The maximum swelling was exhibited by CAD-133777 % in distilled water that was governed by quasi-Fickian diffusion. The swelling volumes were inversely proportional to the amount of GO. In the same way, pH sensitive CPD release was detected by UV visible spectrophotometer that followed zero order and Higuchi models. However, in 4 h, 89.4 % and 83.7 % of CPD was released in PBS and SIF solution correspondingly. Therefore, the chitosan-based biocompatible and biodegradable hydrogel platforms offered substantial potential for the controlled CPD release in medico-biological applications.


Subject(s)
Chitosan , Chitosan/chemistry , Cephradine , Hydrogels/chemistry , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared
3.
Water Air Soil Pollut ; 233(12): 493, 2022.
Article in English | MEDLINE | ID: mdl-36466935

ABSTRACT

The production of synthetic drugs is considered a huge milestone in the healthcare sector, transforming the overall health, aging, and lifestyle of the general population. Due to the surge in production and consumption, pharmaceutical drugs have emerged as potential environmental pollutants that are toxic with low biodegradability. Traditional chromatographic techniques in practice are time-consuming and expensive, despite good precision. Alternatively, electroanalytical techniques are recently identified to be selective, rapid, sensitive, and easier for drug detection. Metal-organic frameworks (MOFs) are known for their intrinsic porous nature, high surface area, and diversity in structural design that provides credible drug-sensing capacities. Long-term reusability and maintaining chemo-structural integrity are major challenges that are countered by ligand-metal combinations, optimization of synthetic conditions, functionalization, and direct MOFs growth over the electrode surface. Moreover, chemical instability and lower conductivities limited the mass commercialization of MOF-based materials in the fields of biosensing, imaging, drug release, therapeutics, and clinical diagnostics. This review is dedicated to analyzing the various combinations of MOFs used for electrochemical detection of pharmaceutical drugs, comprising antibiotics, analgesics, anticancer, antituberculosis, and veterinary drugs. Furthermore, the relationship between the composition, morphology and structural properties of MOFs with their detection capabilities for each drug species is elucidated.

SELECTION OF CITATIONS
SEARCH DETAIL
...