Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ChemistryOpen ; : e202400120, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940235

ABSTRACT

Metal corrosion is a challenge for the world with heavy impacts on the economy. Study on the development of effectiveness anticorrosion additives is a promising strategery for the protection industry. This research focuses on the modification of hydrotalcite Mg-Al (HT) loading tannic acid (TA) with 3-(trimethoxy silyl) propyl methacrylate organo-silane (TMSPM) for applicating as an anti-corrosion additive for epoxy coating on the steel substrate. The suitable ratio of HT and modifiers was investigated and the suitable content of modified HT in epoxy matrix was found based on mechanical properties of the epoxy-based coating. The characteristics of modified HT were assessed through infrared (IR) spectroscopy, X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), thermal gravimetry analysis (TGA), water contact angle (WCA), dynamic light scattering (DLS). Detailly, HT-TA3-S3 shows good stability in distilled water when HT/TA was modified with TMSPM which makes Zeta potential decreases significantly. Besides, SEM analysis presented HT-TA-S has a cylindrical shape about of 500 nm. Moreover, the crystallite size of HT/TA after being modified by TMSPM decreases sharply. All of these prove successfully synthesize HT loading TA with modified TMSPM. Water contact angle (WCA) decreases in case of loading TA and increases in case of modifying with TMSPM (WCA changed from HT (116.3°) to HT-TA (102.4°) and HT-TA-S (120.1°) which indicates the increased hydrophobicity of the sample. The obtained results showed HT/TA was modified successfully with TMSPM. The modification affected the size distribution and surface properties of HT nanoparticles while it did not impact on the crystal structure of HT. After incorporating modified HT/TA into the epoxy coating, the adhesion of coating to steel substrate was improved significantly. Consequently, the adhesion of epoxy/3 wt. % modified HT/TA coating was increased 3 times as compared to epoxy neat (from 0.76 MPa to 2.77 MPa). In addition, the relative hardness and gloss retention of epoxy/3 wt. % modified HT/TA coating reached the maximum values as compared to the others. Owing to salt spraying results, the epoxy/3 wt. % modified HT/TA exhibited an excellent anticorrosion ability for the steel substrate. All the above results show the potential of HT nanoparticles loading TA modified with TMSPM as anticorrosive additives for protective coatings on steel substrates.

2.
Molecules ; 27(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36558112

ABSTRACT

In silico docking studies of 50 selected compounds from Millettia dielsiana Harms ex Diels (family Leguminosae) were docked into the binding pocket of the PI3K/mTOR protein. In there, compounds trans-3-O-p-hydroxycinnamoyl ursolic acid (1) and 5,7,4'-trihydroxyisoflavone 7-O-ß-D-apiofuranosyl-(1→6)-ß-D-glucopyranoside (2) are predicted to be very promising inhibitors against PI3K/mTOR. They direct their cytotoxic activity against Hepatocellular carcinoma with binding affinity (BA) values, the pulling work spent to the co-crystallized ligand from the binding site of PI3K/mTOR (W and Fmax), and the non-equilibrium binding free energy (∆GneqJar) as BA values = -9.237 and -9.083 kcal/mol, W = 83.5 ± 10.6 kcal/mol with Fmax = 336.2 ± 45.3 pN and 126.6 ± 21.7 kcal/mol with Fmax = 430.3 ± 84.0 pN, and ∆GneqJar = -69.86074 and -101.2317 kcal/mol, respectively. In molecular dynamic simulation, the RMSD value of the PI3K/mTOR complex with compounds (1 and 2) was in the range of 0.3 nm to the end of the simulation. Therefore, the compounds (1 and 2) are predicted to be very promising inhibitors against PI3K/mTOR. The crude extract, ethyl acetate fraction and compounds (1 and 2) from Millettia dielsiana exhibited moderate to potent in vitro cytotoxicity on Hepatocellular carcinoma cell line with IC50 values of 81.2 µg/mL, 60.4 µg/mL, 23.1 µM, and 16.3 µM, respectively, and showed relatively potent to potent in vitro antioxidant activity on mouse hepatocytes with ED50 values of 24.4 µg/mL, 19.3 µg/mL, 30.7 µM, and 20.5 µM, respectively. In conclusion, Millettia dielsiana and compounds (1 and 2) are predicted to have very promising cytotoxic activity against Hepatocellular carcinoma and have a hepatoprotective effect.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Millettia , Mice , Animals , Millettia/chemistry , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , TOR Serine-Threonine Kinases , Phosphatidylinositol 3-Kinases , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...