Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201410

ABSTRACT

In-process control (IPC) is an important task during chemical syntheses in pharmaceutical industry. Despite the fact that each chemical reaction is unique, the most common analytical technique used for IPC analysis is high performance liquid chromatography (HPLC). Today, the so-called "Quality by Design" (QbD) principle is often being applied rather than "Trial and Error" approach for HPLC method development. The QbD approach requires only for a very few experimental measurements to find the appropriate stationary phase and optimal chromatographic conditions such as the composition of mobile phase, gradient steepness or time (tG), temperature (T), and mobile phase pH. In this study, the applicability of a multifactorial liquid chromatographic optimization software was studied in an extended knowledge space. Using state-of-the-art ultra-high performance liquid chromatography (UHPLC), the analysis time can significantly be shortened. By using UHPLC, it is possible to analyse the composition of the reaction mixture within few minutes. In this work, a mixture of route of synthesis of apixaban was analysed on short narrow bore column (50 × 2.1 mm, packed with sub-2 µm particles) resulting in short analysis time. The aim of the study was to cover a relatively narrow range of method parameters (tG, T, pH) in order to find a robust working point (zone). The results of the virtual (modeled) robustness testing were systematically compared to experimental measurements and Design of Experiments (DoE) based predictions.


Subject(s)
Chromatography, High Pressure Liquid/methods , Pyrazoles/chemistry , Pyridones/chemistry , Hydrogen-Ion Concentration , Research Design , Software , Temperature
2.
J Chromatogr Sci ; 57(3): 230-237, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30535186

ABSTRACT

The goal of this work was to investigate and compare the selectivity of three different hydrophilic interaction liquid chromatography (HILIC) charge modulated amide columns, iHILIC®-Fusion, iHILIC®-Fusion(+) and iHILIC®-Fusion(P), for analysis of compounds in hallucinogen mushrooms. An extract of a truffle-like fungus containing psilocin, psilocybin and baeocystin was chosen as test material. Three different modeling methods were applied to describe the retention times of constituents in isocratic separation mode as a function of mobile phase composition, pH and temperature. Two models using DryLab® 2010 assumed quadratic and exponential relationship between the retention time and solvent fraction of aqueous component of the mobile phase, respectively. These models also illustrate the van't Hoff like equation to describe the temperature-dependence of the retention factor and the theory of Snyder et al. to estimate the retention factor as a function of pH of the aqueous mobile phase component. The third model using STATISTICA® multivariate data analysis in a predefined experimental space was able to predict the retention times. All HILIC columns in this comparison were proved to be suitable for separation of the two hallucinogenic alkaloids from each other and from the matrix components. Majority of compounds were separated with satisfactory resolutions required by the comparative analysis despite some of them were not fully baseline separated. It was found the best modeling was obtained by using the quadratic approach to predict chromatograms for predefined chromatographic conditions (volumetric ratio of acetonitrile to buffer, pH of the buffer and temperature), while the exponential model proved to be the worst for prediction. The modeling with multivariate data analysis fell between the other two methods.


Subject(s)
Agaricales/chemistry , Alkaloids/analysis , Chromatography, Liquid/methods , Hallucinogens/analysis , Alkaloids/chemistry , Alkaloids/isolation & purification , Hallucinogens/chemistry , Hallucinogens/isolation & purification , Hydrophobic and Hydrophilic Interactions , Models, Chemical
3.
J Pharm Biomed Anal ; 160: 336-343, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30114612

ABSTRACT

Chromatographic methods are progressing continuously. Increasing sample complexity and safety expectations lead to higher regulatory demands, hence challenges in liquid chromatography analysis are rising, even today, when faster and faster chromatographic systems are extensively employed and become widely accessible for successful method development. The goal of this study was to investigate the impact of mobile phase influences as important factors of selectivity tuning in method development. This would mitigate mobile phase-related robustness issues throughout the method's lifecycle. To discover and understand these effects, a new module of chromatographic modeling software DryLab (ver. 4.3.4. beta) was introduced and a special experimental design (DoE) was tested, allowing the simultaneous optimization of solvent-dependent parameters, such as gradient time (tG), ternary eluent composition (tC) and pH, requiring 18 input experiments (2 × 3 × 3 = 18). Additionally, the model creation, using a UPLC system and a narrow bore column (50 × 2.1 mm), the entire experimental work could be finished in 2-3 hours. To demonstrate the applicability of this new design, amlodipine and its related pharmacopoeia impurities (A-H) were subjected to be used in a case study. Predicted vs. Experimental (or Verification) runs showed excellent agreement, average retention time deviations were typically less than 1 s. Modelled robustness testing was also performed, elucidating all important mobile phase and instrument parameters that could influence a method's lifetime performance. Furthermore, as the in silico robustness testing is the least time consuming part of the method development process, it can be used extensively to evaluate robustness even at the very early part in stage 1 of the Method Life Cycle (MLC).


Subject(s)
Amlodipine/analysis , Chromatography, High Pressure Liquid/methods , Research Design , Computer Simulation , Hydrogen-Ion Concentration , Software , Time Factors
4.
J Chromatogr Sci ; 54(10): 1735-1742, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27681775

ABSTRACT

Cannabimimetic compounds have gained an increasing attention from the forensic community during the past few years. The present study was aimed to develop a liquid chromatographic separation method for the analysis of JWH-122 and its methyl isomers. In Hungary, JWH-122 is scheduled as a narcotic compound and its methyl isomers fall into the new psychoactive substance category, attracting significantly milder punishment than JWH-122 does. According to our best knowledge, gas chromatography or reversed phase liquid chromatography coupled with mass spectrometry could not be applied for separation and selective determination of methyl-naphthoyl indol isomers. In this study, we aimed to develop a high performance liquid chromatography method with UV and mass spectrometric detection for the separation of JWH-122 and all its possible isomers, depending on the position of methyl group on the naphthyl frame. Different reversed phase columns were used. Alkyl-modified silica with different selectivity and morphology with different mobile phase composition cannot be applied for separation of JWH-122 isomers. Porous graphitic carbon (PGC) column was used for separation of banned JWH-122 and each of its methyl isomers. In method development, a Quality by Design approach is presented for modeling the retention of the compounds. According to our knowledge, this is the first time reporting the use of intelligent software to estimate the retention on PGC material and using non-aqueous conditions. Retention times predicted by two program packages (STATISTICA® and DryLab®) are compared. The possibilities and limitations of the software modeling in the conditions described above are also evaluated.

5.
J Pharm Biomed Anal ; 108: 1-10, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25703234

ABSTRACT

Column technology needs further improvement even today. To get information of batch-to-batch repeatability, intelligent modeling software was applied. Twelve columns from the same production process, but from different batches were compared in this work. In this paper, the retention parameters of these columns with real life sample solutes were studied. The following parameters were selected for measurements: gradient time, temperature and pH. Based on calculated results, batch-to-batch repeatability of BEH columns was evaluated. Two parallel measurements on two columns from the same batch were performed to obtain information about the quality of packing. Calculating the average of individual working points at the highest critical resolution (R(s,crit)) it was found that the robustness, calculated with a newly released robustness module, had a success rate >98% among the predicted 3(6) = 729 experiments for all 12 columns. With the help of retention modeling all substances could be separated independently from the batch and/or packing, using the same conditions, having high robustness of the experiments.


Subject(s)
Chromatography, High Pressure Liquid/methods , Software , Technology, Pharmaceutical/instrumentation , Hydrogen-Ion Concentration , Reproducibility of Results , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...