Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Softw Syst Model ; 17(4): 1365-1393, 2018.
Article in English | MEDLINE | ID: mdl-30220905

ABSTRACT

In model-driven development of safety-critical systems (like automotive, avionics or railways), well-formedness of models is repeatedly validated in order to detect design flaws as early as possible. In many industrial tools, validation rules are still often implemented by a large amount of imperative model traversal code which makes those rule implementations complicated and hard to maintain. Additionally, as models are rapidly increasing in size and complexity, efficient execution of validation rules is challenging for the currently available tools. Checking well-formedness constraints can be captured by declarative queries over graph models, while model update operations can be specified as model transformations. This paper presents a benchmark for systematically assessing the scalability of validating and revalidating well-formedness constraints over large graph models. The benchmark defines well-formedness validation scenarios in the railway domain: a metamodel, an instance model generator and a set of well-formedness constraints captured by queries, fault injection and repair operations (imitating the work of systems engineers by model transformations). The benchmark focuses on the performance of query evaluation, i.e. its execution time and memory consumption, with a particular emphasis on reevaluation. We demonstrate that the benchmark can be adopted to various technologies and query engines, including modeling tools; relational, graph and semantic databases. The Train Benchmark is available as an open-source project with continuous builds from https://github.com/FTSRG/trainbenchmark.

2.
Softw Syst Model ; 17(1): 135-162, 2018.
Article in English | MEDLINE | ID: mdl-29449795

ABSTRACT

Streaming model transformations represent a novel class of transformations to manipulate models whose elements are continuously produced or modified in high volume and with rapid rate of change. Executing streaming transformations requires efficient techniques to recognize activated transformation rules over a live model and a potentially infinite stream of events. In this paper, we propose foundations of streaming model transformations by innovatively integrating incremental model query, complex event processing (CEP) and reactive (event-driven) transformation techniques. Complex event processing allows to identify relevant patterns and sequences of events over an event stream. Our approach enables event streams to include model change events which are automatically and continuously populated by incremental model queries. Furthermore, a reactive rule engine carries out transformations on identified complex event patterns. We provide an integrated domain-specific language with precise semantics for capturing complex event patterns and streaming transformations together with an execution engine, all of which is now part of the Viatra reactive transformation framework. We demonstrate the feasibility of our approach with two case studies: one in an advanced model engineering workflow; and one in the context of on-the-fly gesture recognition.

SELECTION OF CITATIONS
SEARCH DETAIL
...