Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 27(14): 3111-3116, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28549735

ABSTRACT

PDZ domains play crucial roles in cell signaling processes and are therefore attractive targets for the development of therapeutic inhibitors. In many cases, C-terminal peptides are the physiological binding partners of PDZ domains. To identify both native ligands and potential inhibitors we have screened arrays synthesized by the process of inverted peptides (PIPE), a variant of SPOT synthesis that generates peptides with free C-termini. Here, we present the development of a new functionalized cellulose membrane as solid support along with the optimized PIPEPLUS technology. Improved resolution and accuracy of the synthesis were shown with peptide arrays containing both natural and non-natural amino acids. These new screening possibilities will advance the development of active, selective and metabolically stable PDZ interactors.


Subject(s)
Peptides/chemistry , Amino Acid Sequence , Chromatography, High Pressure Liquid , Ligands , PDZ Domains , Peptide Library , Peptides/analysis , Peptides/chemical synthesis , Protein Binding
2.
PLoS Biol ; 15(1): e2000080, 2017 01.
Article in English | MEDLINE | ID: mdl-28060820

ABSTRACT

Signaling of the cytokine interleukin-6 (IL-6) via its soluble IL-6 receptor (sIL-6R) is responsible for the proinflammatory properties of IL-6 and constitutes an attractive therapeutic target, but how the sIL-6R is generated in vivo remains largely unclear. Here, we use liquid chromatography-mass spectrometry to identify an sIL-6R form in human serum that originates from proteolytic cleavage, map its cleavage site between Pro-355 and Val-356, and determine the occupancy of all O- and N-glycosylation sites of the human sIL-6R. The metalloprotease a disintegrin and metalloproteinase 17 (ADAM17) uses this cleavage site in vitro, and mutation of Val-356 is sufficient to completely abrogate IL-6R proteolysis. N- and O-glycosylation were dispensable for signaling of the IL-6R, but proteolysis was orchestrated by an N- and O-glycosylated sequon near the cleavage site and an N-glycan exosite in domain D1. Proteolysis of an IL-6R completely devoid of glycans is significantly impaired. Thus, glycosylation is an important regulator for sIL-6R generation.


Subject(s)
Proteolysis , Receptors, Interleukin-6/metabolism , ADAM10 Protein/metabolism , ADAM17 Protein/metabolism , Alternative Splicing/genetics , Amino Acid Sequence , Amyloid Precursor Protein Secretases/metabolism , Cell Line , Cell Membrane/metabolism , Glycosylation , Humans , Intracellular Space/metabolism , Mass Spectrometry , Membrane Proteins/metabolism , Mutation/genetics , Polysaccharides/metabolism , Proline/metabolism , Protein Domains , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Interleukin-6/blood , Receptors, Interleukin-6/chemistry , Receptors, Interleukin-6/genetics , Signal Transduction , Solubility , Valine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...