Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 411(28): 7573-7583, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31642944

ABSTRACT

Desorption atmospheric pressure photoionization (DAPPI) is an ambient mass spectrometry (MS) technique that allows the analysis of both polar and nonpolar compounds directly from the surfaces of various sample types. Here, DAPPI was used to study the chemical profiles in different parts of birch and alder tree barks. Four distinct fractions of Betula pendula (silver birch) bark were collected from three different developmental stages of the stem, after which the chemical profiles of the different tissue types were measured. Of special interest were triterpenoids, a class of important defensive substances, which are found in the bark of the silver birch. Additionally, the chemical profiles of lenticels and the surrounding surfaces in the phellem of B. pendula (silver birch), Alnus glutinosa (black alder), and Alnus incana (gray alder) were screened with DAPPI. Another ambient MS technique, laser ablation atmospheric pressure photoionization (LAAPPI), was further used for the mass spectrometry imaging of lenticels on the B. pendula phellem. All the studied birch bark fractions showed individual chemical profiles in DAPPI. The mass spectra from the young apical stem and the transition zone resembled each other more than the mature stem. Instead, the phellem was found to contain a high amount of triterpenoids in all the developmental stages of the stem. The most intense peaks in the DAPPI mass spectra of the birch bark fractions were those of betulin and lupeol. Betulinic and betulonic acid peaks were intense as well, and these compounds were detected especially in the lenticels of the tree samples. Graphical abstract.


Subject(s)
Alnus/chemistry , Betula/chemistry , Mass Spectrometry/methods , Plant Bark/chemistry
2.
New Phytol ; 222(4): 1816-1831, 2019 06.
Article in English | MEDLINE | ID: mdl-30724367

ABSTRACT

Tree bark is a highly specialized array of tissues that plays important roles in plant protection and development. Bark tissues develop from two lateral meristems; the phellogen (cork cambium) produces the outermost stem-environment barrier called the periderm, while the vascular cambium contributes with phloem tissues. Although bark is diverse in terms of tissues, functions and species, it remains understudied at higher resolution. We dissected the stem of silver birch (Betula pendula) into eight major tissue types, and characterized these by a combined transcriptomics and metabolomics approach. We further analyzed the varying bark types within the Betulaceae family. The two meristems had a distinct contribution to the stem transcriptomic landscape. Furthermore, inter- and intraspecies analyses illustrated the unique molecular profile of the phellem. We identified multiple tissue-specific metabolic pathways, such as the mevalonate/betulin biosynthesis pathway, that displayed differential evolution within the Betulaceae. A detailed analysis of suberin and betulin biosynthesis pathways identified a set of underlying regulators and highlighted the important role of local, small-scale gene duplication events in the evolution of metabolic pathways. This work reveals the transcriptome and metabolic diversity among bark tissues and provides insights to its development and evolution, as well as its biotechnological applications.


Subject(s)
Betula/genetics , Plant Bark/chemistry , Plant Bark/genetics , Plant Stems/genetics , Transcriptome/genetics , Betula/growth & development , Biosynthetic Pathways/genetics , Cambium/genetics , Evolution, Molecular , Gene Expression Regulation, Plant , Genome, Plant , Lipids/chemistry , Meristem/genetics , Organ Specificity , Species Specificity , Stem Cell Niche , Triterpenes/metabolism , Wood/genetics
3.
Rapid Commun Mass Spectrom ; 28(21): 2325-36, 2014 Nov 15.
Article in English | MEDLINE | ID: mdl-25279746

ABSTRACT

RATIONALE: Ambient mass spectrometry (MS) is a tool for screening analytes directly from sample surfaces. However, background impurities may complicate the spectra and therefore fast separation techniques are needed. Here, we demonstrate the use of travelling wave ion mobility spectrometry in a comparative study of two ambient MS techniques. METHODS: Desorption atmospheric pressure photoionization (DAPPI) and direct analysis in real time (DART) were coupled with travelling wave ion mobility mass spectrometry (TWIM-MS) for highly selective surface analysis. The ionization efficiencies of DAPPI and DART were compared. Test compounds were: bisphenol A, benzo[a]pyrene, ranitidine, cortisol and α-tocopherol. DAPPI-MS and DART-TWIM-MS were also applied to the analysis of chloroquine from dried blood spots, and α-tocopherol from almond surface, and DAPPI-TWIM-MS was applied to analysis of pharmaceuticals and multivitamin tablets. RESULTS: DAPPI was approximately 100 times more sensitive than DART for bisphenol A and 10-20 times more sensitive for the other compounds. The limits of detection were between 30-290 and 330-8200 fmol for DAPPI and DART, respectively. Also, from the authentic samples, DAPPI ionized chloroquine and α-tocopherol more efficiently than DART. The mobility separation enabled the detection of species with low signal intensities, e.g. thiamine and cholecalciferol, in the DAPPI-TWIM-MS analysis of multivitamin tablets. CONCLUSIONS: DAPPI ionized the studied compounds of interest more efficiently than DART. For both DAPPI and DART, the mobility separation prior to MS analysis reduced the amount of chemical noise in the mass spectrum and significantly increased the signal-to-noise ratio for the analytes.


Subject(s)
Mass Spectrometry/methods , Atmospheric Pressure , Dried Blood Spot Testing , Humans , Organic Chemicals/analysis , Organic Chemicals/chemistry , Photochemical Processes , Signal-To-Noise Ratio , Tablets/chemistry
4.
J Phys Chem A ; 117(30): 6389-401, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23772648

ABSTRACT

The kinetics for the decomposition of the symmetrical proton-bound dimers of a series of 2-ketones (M) from acetone to 2-nonanone have been determined at ambient pressure by linear ion mobility spectrometry (IMS) and by differential mobility spectrometry (DMS). Decomposition, M2H(+) →MH(+) + M, in the IMS instrument, observed under thermal conditions over the temperature range 147 to 172 °C, yielded almost identical Arrhenius parameters Ea = 122 kJ mol(-1) and ln A = 38.8 for the dimers of 2-pentanone, 2-heptanone, and 2-nonanone. Ion decomposition in the DMS instrument was due to a combination of thermal and electric field energies at an effective ion internal temperature whose value was estimated by reference to the IMS kinetic parameters. Decomposition was observed with radio frequency (RF) fields with maximum intensities in the range 10 kV cm(-1) to 30 kV cm(-1) and gas temperatures from 30 to 110 °C, which yielded effective temperatures that were higher than the gas temperature by 260° at 30 °C and 100° at 110 °C. There was a mass dependence of the field for the onset of decomposition: the higher the ion mass, the higher the required field at a given gas temperature, which is ascribed to the associated increasing heat capacity with the increasing carbon number, but similar, internal vibrations and rotations.

5.
Anal Chim Acta ; 623(1): 59-65, 2008 Aug 08.
Article in English | MEDLINE | ID: mdl-18611458

ABSTRACT

Aspiration ion mobility spectrometry (IMS) has been used for the first time to screen 3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexaoxacyclononane explosive, the most commonly known as triacetone triperoxide (TATP). Gaseous TATP was generated from synthesized solid compound, sublimed and directed to a portable chemical detection system comprised of an aspiration-type IMS detector and six semiconductor sensors. Different unknown TATP gas phase concentrations were produced and corresponding IMS and semiconductor responses were measured. The experimental concentrations were determined by gas chromatography-mass spectrometry (GC-MS). The results evidenced that the monitored compound in the gas phase was TATP. In addition, the determined TATP concentrations and corresponding IMS intensities showed that the IMS response values were proportional to the measured TATP concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...