Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 15(9): 3296-305, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25072521

ABSTRACT

D-peptides have been attributed pharmacological advantages over regular L-peptides, yet design rules are largely unknown. Based on a designed coiled coil-like D/L heterotetramer, named L-Base/D-Acid, we generated a library offering alternative residues for interaction with the D-peptide. Phage display selection yielded one predominant peptide, named HelixA, that differed at 13 positions from the scaffold helix. In addition to the observed D-/L-heterotetramers, ratio-dependent intermediate states were detected by isothermal titration calorimetry. Importantly, the formation of the selected HelixA/D-Acid bundle passes through fewer intermediate states than L-Base/D-Acid. Back mutation of HelixA core residues to L-Base (HelixLL) revealed that the residues at e/g-positions are responsible for the different intermediates. Furthermore, a Val-core variant (PeptideVV) was completely devoid of binding D-Acid, whereas an Ile-core helix (HelixII) interacted with D-Acid in a significantly more specific complex than L-Base.


Subject(s)
Multiprotein Complexes/chemistry , Mutation, Missense , Peptide Library , Amino Acid Substitution , Multiprotein Complexes/chemical synthesis , Multiprotein Complexes/genetics , Protein Structure, Secondary
2.
J Pept Sci ; 20(6): 385-97, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24692230

ABSTRACT

The non-random chromosomal translocations t(10;11)(p13;q23) and t(10;11)(p13;q14-21) result in leukemogenic fusion proteins comprising the coiled coil domain of the transcription factor AF10 and the proteins MLL or CALM, respectively, and subsequently cause certain types of acute leukemia. The AF10 coiled-coil domain, which is crucial for the leukemogenic effect, has been shown to interact with GAS41, a protein previously identified as the product of an amplified gene in glioblastoma. Using sequential synthetic peptides, we mapped the potential AF10/GAS41 interaction site, which was subsequently be used as scaffold for a library targeting the AF10 coiled-coil domain. Using phage display, we selected a peptide that binds the AF10 coiled-coil domain with higher affinity than the respective coiled-coil region of wild-type GAS41, as demonstrated by phage ELISA, CD, and PCAs. Furthermore, we were able to successfully deploy the inhibitory peptide in a mammalian cell line to lower the expression of Hoxa genes that have been described to be overexpressed in these leukemias. This work dissects molecular determinants mediating AF10-directed interactions in leukemic fusions comprising the N-terminal parts of the proteins MLL or CALM and the C-terminal coiled-coil domain of AF10. Furthermore, it outlines the first steps in recognizing and blocking the leukemia-associated AF10 interaction in histiocytic lymphoma cells and therefore, may have significant implications in future diagnostics and therapeutics.


Subject(s)
Peptides/metabolism , Transcription Factors/antagonists & inhibitors , HEK293 Cells , Humans , Peptide Library , Peptides/chemical synthesis , Peptides/chemistry , Structure-Activity Relationship , Transcription Factors/chemistry , U937 Cells
3.
Protein Eng Des Sel ; 26(3): 225-42, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23223941

ABSTRACT

The twin-arginine translocation (TAT) pathway of the bacterial cytoplasmic membrane mediates translocation only of proteins that accomplished a native-like conformation. We deploy this feature in modular selection systems for directed evolution, in which folding helpers as well as dimeric or oligomeric protein-protein interactions enable TAT-dependent translocation of the resistance marker TEM ß-lactamase (ßL). Specifically, we demonstrate and analyze selection of (i) enhancers for folding by direct TAT translocation selection of a target protein interposed between the TorA signal sequence and ßL, (ii) dimeric or oligomeric protein-protein interactions by hitchhiker translocation (HiT) selection of proteins fused to the TorA signal sequence and to the ßL, respectively and (iii) heterotrimeric protein-protein interactions by combining HiT with protein fragment complementation selection of proteins fused to two split ßL fragments and TorA, respectively. The lactamase fragments were additionally engineered for improved activity and stability. Applicability was benchmarked with interaction partners of known affinity and multimerization whereby cellular fitness correlated well with biophysical protein properties. Ultimately, the HiT selection was employed to identify peptides, which specifically bind to leukemia- and melanoma-relevant target proteins (MITF and ETO) by coiled-coil or tetra-helix-bundle formation with high affinity. The various versions of TAT selection led to inhibiting peptides (iPEPs) of disease-promoting interactions and enabled so far difficult to achieve selections.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Membrane Transport Proteins/metabolism , Protein Engineering/methods , Protein Interaction Mapping , beta-Lactamases/metabolism , Arginine/genetics , Arginine/metabolism , Cloning, Molecular/methods , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Models, Molecular , Protein Folding , Protein Multimerization , Protein Transport , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , beta-Lactamases/chemistry , beta-Lactamases/genetics
4.
Methods Mol Biol ; 535: 263-91, 2009.
Article in English | MEDLINE | ID: mdl-19377990

ABSTRACT

Cell physiology depends on a fine-tuned network of protein-protein interactions, and misguided interactions are often associated with various diseases. Consequently, peptides, which are able to specifically interfere with such adventitious interactions, are of high interest for analytical as well as medical purposes. One of the most abundant protein interaction domains is the coiled-coil motif, and thus provides a premier target. Coiled coils, which consist of two or more alpha-helices wrapped around each other, have one of the simplest interaction interfaces, yet they are able to confer highly specific homo- and heterotypic interactions involved in virtually any cellular process. While there are several ways to generate interfering peptides, the combination of library design with a powerful selection system seems to be one of the most effective and promising approaches. This chapter guides through all steps of such a process, starting with library options and cloning, detailing suitable selection techniques and ending with purification for further down-stream characterization. Such generated peptides will function as versatile tools to interfere with the natural function of their targets thereby illuminating their down-stream signaling and, in general, promoting understanding of factors leading to specificity and stability in protein-protein interactions. Furthermore, peptides interfering with medically relevant proteins might become important diagnostics and therapeutics.


Subject(s)
Aptamers, Peptide/isolation & purification , Aptamers, Peptide/metabolism , Protein Interaction Domains and Motifs , SELEX Aptamer Technique/methods , Aptamers, Peptide/genetics , Bacteria/cytology , Bacteria/metabolism , Chromatography, Affinity , Cloning, Molecular , Leucine Zippers , Peptide Library , Protein Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...