Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 637: 207-215, 2023 May.
Article in English | MEDLINE | ID: mdl-36701866

ABSTRACT

HYPOTHESIS: The key to prepare a mesostructured porous material by a soft-template route coupled to a colloidal sol-gel process is to control the surfactant-colloid interface. In the case of tetravalent actinide ions, their high reactivity in aqueous media always leads to uncontrolled and irreversible condensation. The addition of a complexing agent to the sol may moderate these reactions and enhances the interaction between the colloids and the surfactant to in fine prepare a mesostructured nanoporous actinide oxide material. EXPERIMENTS: Several colloidal sols were prepared without and with formic acid as complexing agent by varying the molar ratios between thorium, carboxylic surfactant and pH. Small and Wide Angle X-ray Scattering were used to characterize the nature of the colloids, their interaction with the surfactant and the final ThO2 materials. FINDINGS: Depending on the colloid nature, hexagonal or worm-like hybrid mesophase is formed. The thermal treatment of the worm-like mesophase with a sufficient amount of Th-formic acid hexameric species coated at the surface of surfactant micelles generates micrometric ThO2 nanofibers. This material having an accessible porosity opens new perspectives to be impregnated with minor actinide solutions offering a promising safety method for the fabrication of mixed oxide nuclear fuel and the minor actinide transmutation.

2.
ACS Appl Mater Interfaces ; 14(47): 53165-53173, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36383750

ABSTRACT

The identification of new colloidal sol-gel routes for the preparation of actinide oxides, which have a homogeneous and accessible porosity that can easily be impregnated by any concentrated actinide solution, opens new perspectives for the preparation of homogeneous nuclear fuel for minor actinide transmutation. This homogeneity allows us to avoid "hot spot" formation due to the local accumulation of more fissile elements. Here, we report the preparation of macro-microporous ThO2 materials by a colloidal sol-gel route. Using a thorium salt with 6-aminocaproic acid as a complexing agent at a controlled pH, we were able to pilot the condensation of thorium hydroxo species forming colloids of tuned nanometric size and thus the sol stability. After a freeze-drying process to concentrate colloids and a thermal treatment allowing complexing agent removal and macroporosity formation by a brutal gas release during combustion, a loose packing of ThO2 nanoparticles with an ordered distribution of interparticular porosity and a fraction of nanometric crystallites, whose size depends on the initial colloidal size, were obtained. The sols, pastes, and final materials were characterized by small- and wide-angle X-ray scattering to determine the colloidal size and the final structure of the materials, which was also confirmed by transmission electron microscopy. The most promising material was finally successfully impregnated by a simulating minor actinide solution and thermally treated to prepare a mixed actinide oxide material. This safe technology, relying on the colloidal sol-gel process and the formulation of complex fluids forming tunable precursors, opens new perspectives for the reuse of nuclear waste solutions as new fuel.

3.
J Appl Crystallogr ; 55(Pt 5): 1154-1163, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36249511

ABSTRACT

The characterization of nanoporous powders of highly absorbing compounds by small-angle X-ray scattering (SAXS) involves overcoming several difficulties before quantitative information related to the porous texture, such as the specific surface and the porous volume, can be derived. In this article, first, the contribution of the grain facet reflectivity and scattering from the bulk of a grain with the density of ThO2, a highly absorbing material, were calculated. Microporous ThO2 powder having micrometric grain size was characterized, in which the scattering signal is predominant. A high-resolution synchrotron instrument was used in order to cover a wider q range and minimize the absorption effect, and the results were compared with those obtained using a laboratory X-ray source. Concerning the absorption problem existing with a laboratory X-ray source, a new and robust experimental method was proposed to correctly determine the scattering intensity of the highly absorbing granular samples on an absolute scale. This method allows one to calculate accurately the porous volume and the specific surface via Porod's law and the invariant using a laboratory SAXS instrument. This last result opens new perspectives for the characterization of the volume and the specific surface of highly absorbing actinide oxide powders.

4.
J Colloid Interface Sci ; 614: 396-404, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35104710

ABSTRACT

Understanding ionic solutions in single-digit nanoconfinement is crucial to explain the behavioral transition of confined solutions. This is particularly the case when the system length scale crosses the classical key length scales describing energetics and equilibrium of ionic solutions next to surfaces. Experimentally probing nanoconfinement would open large perspectives to test modelling or theory predictions. Here, using a new test vehicle that consists in 3 and 5 nm-height silica nanochannels associated with an original characterization technique based on the interface hard X-ray reflectivity analysis, we directly probed the transport of solutions containing cations having increasing kosmotropic properties (XCl2 with X: Ba < Ca < Mg) and obtained their distributions inside the nanochannels. We observed that cation adsorption decreases with the size of the confinement and that small cation adsorption is favored. In addition, nanochannel clogging occurs when ions tend to form ion pairs. These ion pairs may play the role of nano-sized prenucleation clusters leading to phase precipitation. These results evidence the specific ion effect in single-digit nanoconfinement that may result in dramatic changes of solution properties. In this line, our new method opens new perspectives for the characterization of ionic solutions and of interfaces in single-digit nanoconfinement.


Subject(s)
Silicon Dioxide , Adsorption , Cations
5.
Materials (Basel) ; 14(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923844

ABSTRACT

Geopolymer has been selected as a hydraulic mineral binder for the immobilization of MgZr fuel cladding coming from the dismantling of French Uranium Natural Graphite Gas reactor dedicated to a geological disposal. In this context, the corrosion processes and the nature of the corrosion products formed on MgZr alloy in a geopolymer matrix with and without the corrosion inhibitor NaF have been determined using a multiscale approach combining in situ Grazing Incidence hard X-ray Diffraction, Raman microspectroscopy, Scanning and Transmission Electron Microscopies coupled to Energy Dispersive X-ray Spectroscopy. The composition, the morphology, and the porous texture of the corrosion products were characterized, and the effect of the corrosion inhibitor NaF was evidenced. The results highlighted the formation of Mg(OH)2-xFx. In addition, in presence of NaF, NaMgF3 forms leading to a decrease of the thickness and the porosity of the corrosion products layer. Moreover, a precipitation of magnesium silicates within the porosity of the geopolymer was evidenced. Finally, we propose a detailed set of interconnected processes occurring during the MgZr corrosion in the geopolymer.

6.
Materials (Basel) ; 13(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158158

ABSTRACT

Geopolymer, a nanoporous aluminosilicate filled with water and ions, has been selected as a potential matrix to encapsulate MgZr alloy fuel cladding. In this study, we investigate the evolution of the corrosion products formed during the corrosion of MgZr in poral solutions extracted from geopolymers with and without NaF as corrosion inhibitor. Using various characterization techniques such as Scanning Electron and Scanning Transmission Electron Microscopies coupled to Energy Dispersive X-ray spectroscopy and Grazing Incidence X-ray Diffraction, we show that the amounts of dissolved silica and fluoride species in solution are the key parameters driving the nature of corrosion products and probably their passivating properties regarding MgZr corrosion.

7.
Langmuir ; 35(33): 10780-10794, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31345036

ABSTRACT

In this study, we characterized the structure and the dynamics at a picosecond scale of water molecules in aqueous solutions with cations having various kosmotropic properties (XCl2 where X = Ba2+, Ca2+, and Mg2+) confined in highly ordered mesoporous silica (MCM-41 and grafted MCM-41) by Fourier transform infrared spectroscopy and quasi-elastic neutron scattering. We pinpointed the critical pore size and the electrolyte concentration at which the influence of the ion nature becomes the main factor affecting the water properties. These results suggest that whatever the ions kosmotropic properties, for pore sizes ϕp < 2.6 nm and [XCl2] ≤ 1 M, the water dynamics is mainly slowed down by the size of the confinement. For pore sizes of 6.6 nm, the water dynamics depends on the concentration and kosmotropic properties of the ion more than on the confinement. The water properties within the interfacial layer were also assessed and related to the surface ion excesses obtained by sorption isotherms. We showed that, for pore sizes ϕp ≥ 2.6 nm, the surface ion excess at the pore surface is the main driver affecting the structural properties of water molecules and their dynamics within the interfacial layer.

8.
Langmuir ; 35(7): 2792-2800, 2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30657696

ABSTRACT

Silicon oxide surface properties can be easily modified by grafting alkoxysilane molecules. Here, we studied the structure and the morphology of ultrathin layers prepared by the grafting of alkoxysilanes having different head groups (thiol, amine, and iodo) in supercritical carbon dioxide (CO2) on model plane silicon oxide surfaces. Several characterization techniques (X-ray reflectivity, water contact angle, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM)) were used to determine the physicochemical properties of the layers prepared at different temperatures. Moreover, for the first time, AFM peak force measurements were used to delve deeper into the determination of the structure of these ultrathin alkoxysilane layers. The results show that the grafting temperature and the nature of the head group strongly affect the morphology and structure of the grafted layers. Dense monolayers are obtained with 3-(mercaptopropyl)trimethoxysilane at 60 °C, polycondensed layers are always prepared with [3-(aminoethylamino)propyl]trimethoxysilane, and a dense bilayer is synthesized with 3-(iodopropyl)triethoxysilane at 120 °C.

9.
Langmuir ; 26(11): 8981-7, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20187647

ABSTRACT

Alkoxysilane having various functional headgroups (amino and mercapto) and morphologies was deposited by supercritical CO(2) onto a porous dielectric material to replace the metallic barrier used in semiconductor devices. These organic layers were successfully coated with Cu. The morphologies of the stacks were investigated by X-ray and neutron reflectometry and atomic force microscopy. Whereas PVD Cu deposition is not adapted to silanized dielectric material with mercapto and aminopropyltrimethoxysilane but acceptable with aminoethylaminopropyltrimethoxysilane, the MOCVD process is more interesting. XRR and NR data clearly indicate that silane layers remain intact after copper deposition and, depending on the Cu immobilization capability of the chemical function of the silane and its orientation into the layer, the Cu film morphologies are different. Dense, thin films having small Cu grains were obtained with an aminoethylaminopropyltrimethoxysilane layer, and thick films having a low density and large Cu grains were obtained with an aminopropyltrimethoxysilane layer. Nucleation and growth mechanisms are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...