Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 223: 115086, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31426950

ABSTRACT

Starch-legume protein composites were obtained by extrusion of pea flour and pea starch-protein blend at various specific mechanical energies (100-2000 kJ/kg) and a temperature low enough to avoid expansion. The morphology of these composites displayed protein aggregates dispersed in a starch matrix, revealed by microscopy. Image analysis was used to determine the median width of protein aggregates (D50), their total perimeter and surface, from which a protein/starch interface index (Ii) was derived. The mechanical properties of composites were determined by a three-point bending test. The pea flour composites had a higher interface index Ii (1.8-3.1) with lower median particle width D50 (8-18 µm) and a more brittle behaviour than the blend composites that had a lower Ii (1-1.1) and higher D50 (22-31 µm). For both materials, rupture stress and strain were negatively correlated with Ii. This result suggested that there was a poor interfacial adhesion between the pea starch and proteins.


Subject(s)
Pea Proteins/chemistry , Pisum sativum/chemistry , Starch/chemistry , Color , Materials Testing , Particle Size , Surface Properties , Temperature
2.
Food Res Int ; 108: 203-215, 2018 06.
Article in English | MEDLINE | ID: mdl-29735050

ABSTRACT

Dehulled yellow pea flour (48.2% starch, 23.4% proteins, d.b.), was processed by a twin-screw extruder at various moisture contents MC (18-35% w.b.), product temperature T (115-165 °C), and specific mechanical energy SME (50-1200 kJ/kg). Structural changes of extruded pea flour were determined at different scales by measurements of density (expansion), crystallinity (X-ray diffraction), gelatinisation enthalpy (DSC), starch solubility in water and protein solubility in SDS and DTE (SE-HPLC). Foam density dropped from 820 to 85 kg/m3 with increase in SME and T (R2 ≥ 0.78). DSC and XRD results showed that starch was amorphous whatever extrusion conditions. Its solubility in water augmented up to 50%. Increasing temperature from 115 to 165 °C decreased proteins soluble in SDS from 95 to 35% (R2 = 0.83) of total proteins, whereas the proteins soluble in DTE increased from 5 to 45% (R2 = 0.75) of total proteins. These trends could be described by sigmoid models, which allowed determining onset temperatures for changes of protein solubility in the interval [125, 146 °C], whatever moisture content. The SME impact on protein solubility followed similar trends. These results suggest the creation of protein network by SS bonds, implicating larger SDS-insoluble protein aggregates, as a result of increasing T and SME, accompanied by creation of covalent bonds other than SS ones. CSLM images suggested that extruded pea flour had a composite morphology that changed from dispersed small protein aggregates to a bi-continuous matrix of large protein aggregates and amorphous starch. This morphology would govern the expansion of pea flour by extrusion.


Subject(s)
Food Analysis/methods , Food Handling/methods , Pisum sativum/chemistry , Plant Proteins, Dietary/chemistry , Seeds/chemistry , Starch/chemistry , Carbohydrate Conformation , Color , Crystallization , Protein Aggregates , Protein Conformation , Solubility , Structure-Activity Relationship , Temperature , Water/chemistry
3.
Soft Matter ; 11(17): 3373-84, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25816111

ABSTRACT

X-ray tomography is a relevant technique for the dynamic follow-up of gas bubbles in an opaque viscoelastic matrix, especially using image analysis. It has been applied here to pieces of fermenting wheat flour dough of various compositions, at two different voxel sizes (15 and 5 µm). The resulting evolution of the main cellular features shows that the creation of cellular structures follows two regimes that are defined by a characteristic time of connectivity, tc [30 and 80 min]: first (t ≤ tc), bubbles grow freely and then (t ≥ tc) they become connected since the percolation of the gas phase is limited by liquid films. During the first regime, bubbles can be tracked and the local strain rate can be measured. Its values (10(-4)-5 × 10(-4) s(-1)) are in agreement with those computed from dough viscosity and internal gas pressure, both of which depend on the composition. For higher porosity, P = 0.64 in our case, and thus occurring in the second regime, different cellular structures are obtained and XRT images show deformed gas cells that display complex shapes. The comparison of these images with confocal laser scanning microscopy images suggests the presence of liquid films that separate these cells. The dough can therefore be seen as a three-phase medium: viscoelastic matrix/gas cell/liquid phase. The contributions of the different levels of matter organization can be integrated by defining a capillary number (C = 0.1-1) that makes it possible to predict the macroscopic dough behavior.


Subject(s)
Fermentation , Flour , Gases/chemistry , Phase Transition , Elasticity , Porosity , Viscosity , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...