ABSTRACT
The mechanical and ballistic performance of epoxy matrix composites reinforced with 10, 20, and 30 vol.% of babassu fibers was investigated for the first time. The tests included tension, impact, and ballistic testing with 0.22 caliber ammunition. The results showed an improvement in tensile strength, elastic modulus, and elongation with the addition of babassu fiber, and the 30 vol.% composite stood out. Scanning electron microscopy analysis revealed the fracture modes of the composites, highlighting brittle fractures in the epoxy matrix, as well as other mechanisms such as fiber breakage and delamination in the fiber composites. Izod impact tests also showed improvement with increasing babassu fiber content. In ballistic tests, there was an increase in absorbed energy. All composites surpassed plain epoxy by over 3.5 times in ballistic energy absorption, underscoring the potential of babassu fiber in engineering and defense applications.
ABSTRACT
Natural lignocellulosic fibers (NLFs) have been used as a reinforcement for polymer matrix composites in the past couple of decades. Their biodegradability, renewability, and abundance make them appealing for sustainable materials. However, synthetic fibers surpass NLFs in mechanical and thermal properties. Combining these fibers as a hybrid reinforcement in polymeric materials shows promise for multifunctional materials and structures. Functionalizing these composites with graphene-based materials could lead to superior properties. This research optimized the tensile and impact resistance of a jute/aramid/HDPE hybrid nanocomposite by the addition of graphene nanoplatelets (GNP). The hybrid structure with 10 jute/10 aramid layers and 0.10 wt.% GNP exhibited a 2433% increase in mechanical toughness, a 591% increase in tensile strength, and a 462% reduction in ductility compared to neat jute/HDPE composites. A SEM analysis revealed the influence of GNP nano-functionalization on the failure mechanisms of these hybrid nanocomposites.