Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Hypertension ; 81(6): 1218-1232, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38511317

ABSTRACT

Inflammatory responses in small vessels play an important role in the development of cardiovascular diseases, including hypertension, stroke, and small vessel disease. This involves various complex molecular processes including oxidative stress, inflammasome activation, immune-mediated responses, and protein misfolding, which together contribute to microvascular damage. In addition, epigenetic factors, including DNA methylation, histone modifications, and microRNAs influence vascular inflammation and injury. These phenomena may be acquired during the aging process or due to environmental factors. Activation of proinflammatory signaling pathways and molecular events induce low-grade and chronic inflammation with consequent cardiovascular damage. Identifying mechanism-specific targets might provide opportunities in the development of novel therapeutic approaches. Monoclonal antibodies targeting inflammatory cytokines and epigenetic drugs, show promise in reducing microvascular inflammation and associated cardiovascular diseases. In this article, we provide a comprehensive discussion of the complex mechanisms underlying microvascular inflammation and offer insights into innovative therapeutic strategies that may ameliorate vascular injury in cardiovascular disease.


Subject(s)
Inflammation , Humans , Inflammation/metabolism , Inflammation/immunology , Cardiovascular Diseases/metabolism , Oxidative Stress/physiology , Epigenesis, Genetic , Arteries/metabolism , Signal Transduction/physiology , Vasculitis/metabolism , Vasculitis/immunology , Animals
2.
Endocrine ; 84(2): 345-349, 2024 May.
Article in English | MEDLINE | ID: mdl-38400880

ABSTRACT

PURPOSE: Disorders/differences of sex development (DSD) result from variants in many different human genes but, frequently, have no detectable molecular cause. METHODS: Detailed clinical and genetic phenotyping was conducted on a family with three children. A Sec31a animal model and functional studies were used to investigate the significance of the findings. RESULTS: By trio whole-exome DNA sequencing we detected a heterozygous de novo nonsense SEC31A variant, in three children of healthy non-consanguineous parents. The children had different combinations of disorders that included complete gonadal dysgenesis and multiple pituitary hormone deficiency. SEC31A encodes a component of the COPII coat protein complex, necessary for intracellular anterograde vesicle-mediated transport between the endoplasmic reticulum (ER) and Golgi. CRISPR-Cas9 targeted knockout of the orthologous Sec31a gene region resulted in early embryonic lethality in homozygous mice. mRNA expression of ER-stress genes ATF4 and CHOP was increased in the children, suggesting defective protein transport. The pLI score of the gene, from gnomAD data, is 0.02. CONCLUSIONS: SEC31A might underlie a previously unrecognised clinical syndrome comprising gonadal dysgenesis, multiple pituitary hormone deficiencies, dysmorphic features and developmental delay. However, a variant that remains undetected, in a different gene, may alternatively be causal in this family.


Subject(s)
Gonadal Dysgenesis , Hypopituitarism , Animals , Child , Child, Preschool , Female , Humans , Male , Mice , Gonadal Dysgenesis/genetics , Hypopituitarism/genetics , Hypopituitarism/metabolism , Mice, Knockout , Pedigree , Pituitary Hormones/deficiency , Pituitary Hormones/genetics , Vesicular Transport Proteins/genetics
3.
World Neurosurg ; 181: e67-e74, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37385439

ABSTRACT

BACKGROUND: The arcuate eminence (AE) is an anatomically consistent bony protrusion located on the upper surface of the petrous bone that has been previously studied as a reference for lateral skull base approaches. There is a paucity of information in the neurosurgical literature seeking to improve the safety of the extended middle cranial fossa (MCF) approach using detailed morphometric analysis of the AE. OBJECTIVE: To evaluate the use of the AE as an anatomical landmark to help with early identification of the internal acoustic canal (IAC) in MCF approaches by means of a cadaveric study, using a new morphometric reference termed the "M-point." METHODS: A total of 40 dry temporal bones and 2 formalin-preserved, latex-injected cadaveric heads were used. The M-point was established as a new anatomic reference by identifying the intersection of a line perpendicular to the alignment of the petrous ridge (PR), originating from the midpoint of the AE, with the PR itself. Subsequent anatomical measurements were performed to measure the distance between M-point and IAC. Additional distances, including PR length and the anteroposterior and lateral AE surfaces, were also measured. RESULTS: The mean distance between the M-point and the center of the IAC was 14.9 mm (SD ± 2.09), offering a safe drilling area during an MCF approach. CONCLUSIONS: This study provides novel information on identification of a new anatomic reference point known as the M-point that that can be used to improve early surgical identification of the IAC.


Subject(s)
Petrous Bone , Temporal Bone , Humans , Temporal Bone/surgery , Temporal Bone/anatomy & histology , Petrous Bone/surgery , Petrous Bone/anatomy & histology , Skull Base , Cranial Fossa, Middle/surgery , Cranial Fossa, Middle/anatomy & histology , Cadaver
4.
Can J Cardiol ; 39(12): 1859-1873, 2023 12.
Article in English | MEDLINE | ID: mdl-37865227

ABSTRACT

The transient receptor potential (TRP) channel superfamily is a group of nonselective cation channels that function as cellular sensors for a wide range of physical, chemical, and environmental stimuli. According to sequence homology, TRP channels are categorized into 6 subfamilies: TRP canonical, TRP vanilloid, TRP melastatin, TRP ankyrin, TRP mucolipin, and TRP polycystin. They are widely expressed in different cell types and tissues and have essential roles in various physiological and pathological processes by regulating the concentration of ions (Ca2+, Mg2+, Na+, and K+) and influencing intracellular signalling pathways. Human data and experimental models indicate the importance of TRP channels in vascular homeostasis and hypertension. Furthermore, TRP channels have emerged as key players in oxidative stress and inflammation, important in the pathophysiology of cardiovascular diseases, including hypertension. In this review, we present an overview of the TRP channels with a focus on their role in hypertension. In particular, we highlight mechanisms activated by TRP channels in vascular smooth muscle and endothelial cells and discuss their contribution to processes underlying vascular dysfunction in hypertension.


Subject(s)
Hypertension , Transient Receptor Potential Channels , Humans , Endothelial Cells/metabolism , Transient Receptor Potential Channels/metabolism , Muscle, Smooth, Vascular/metabolism , Ions/metabolism
5.
Can J Cardiol ; 39(12): 1874-1887, 2023 12.
Article in English | MEDLINE | ID: mdl-37875177

ABSTRACT

Under physiologic conditions, reactive oxygen species (ROS) function as signalling molecules that control cell function. However, in pathologic conditions, increased generation of ROS triggers oxidative stress, which plays a role in vascular changes associated with hypertension, including endothelial dysfunction, vascular reactivity, and arterial remodelling (termed the vasculopathy of hypertension). The major source of ROS in the vascular system is NADPH oxidase (NOX). Increased NOX activity drives vascular oxidative stress in hypertension. Molecular mechanisms underlying vascular damage in hypertension include activation of redox-sensitive signalling pathways, post-translational modification of proteins, and oxidative damage of DNA and cytoplasmic proteins. In addition, oxidative stress leads to accumulation of proteins in the endoplasmic reticulum (ER) (termed ER stress), with consequent activation of the unfolded protein response (UPR). ER stress is emerging as a potential player in hypertension as abnormal protein folding in the ER leads to oxidative stress and dysregulated activation of the UPR promotes inflammation and injury in vascular and cardiac cells. In addition, the ER engages in crosstalk with exogenous sources of ROS, such as mitochondria and NOX, which can amplify redox processes. Here we provide an update of the role of ROS and NOX in hypertension and discuss novel concepts on the interplay between oxidative stress and ER stress.


Subject(s)
Hypertension , Oxidative Stress , Humans , Reactive Oxygen Species/metabolism , Endoplasmic Reticulum Stress/genetics , Oxidation-Reduction
6.
Sci Rep ; 13(1): 14086, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37640791

ABSTRACT

COVID-19, caused by SARS-CoV-2, is a respiratory disease associated with inflammation and endotheliitis. Mechanisms underling inflammatory processes are unclear, but angiotensin converting enzyme 2 (ACE2), the receptor which binds the spike protein of SARS-CoV-2 may be important. Here we investigated whether spike protein binding to ACE2 induces inflammation in endothelial cells and determined the role of ACE2 in this process. Human endothelial cells were exposed to SARS-CoV-2 spike protein, S1 subunit (rS1p) and pro-inflammatory signaling and inflammatory mediators assessed. ACE2 was modulated pharmacologically and by siRNA. Endothelial cells were also exposed to SARS-CoV-2. rSP1 increased production of IL-6, MCP-1, ICAM-1 and PAI-1, and induced NFkB activation via ACE2 in endothelial cells. rS1p increased microparticle formation, a functional marker of endothelial injury. ACE2 interacting proteins involved in inflammation and RNA biology were identified in rS1p-treated cells. Neither ACE2 expression nor ACE2 enzymatic function were affected by rSP1. Endothelial cells exposed to SARS-CoV-2 virus did not exhibit viral replication. We demonstrate that rSP1 induces endothelial inflammation via ACE2 through processes that are independent of ACE2 enzymatic activity and viral replication. We define a novel role for ACE2 in COVID-19- associated endotheliitis.


Subject(s)
COVID-19 , Endothelial Cells , Humans , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Inflammation , Virus Replication , RNA, Double-Stranded
7.
Can J Cardiol ; 39(9): 1229-1243, 2023 09.
Article in English | MEDLINE | ID: mdl-37422258

ABSTRACT

Hypertension is the primary cause of cardiovascular diseases and is responsible for nearly 9 million deaths worldwide annually. Increasing evidence indicates that in addition to pathophysiologic processes, numerous environmental factors, such as geographic location, lifestyle choices, socioeconomic status, and cultural practices, influence the risk, progression, and severity of hypertension, even in the absence of genetic risk factors. In this review, we discuss the impact of some environmental determinants on hypertension. We focus on clinical data from large population studies and discuss some potential molecular and cellular mechanisms. We highlight how these environmental determinants are interconnected, as small changes in one factor might affect others, and further affect cardiovascular health. In addition, we discuss the crucial impact of socioeconomic factors and how these determinants influence diverse communities with economic disparities. Finally, we address opportunities and challenges for new research to address gaps in knowledge on understanding molecular mechanisms whereby environmental factors influence development of hypertension and associated cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Hypertension , Humans , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Hypertension/epidemiology , Hypertension/etiology , Life Style , Mediastinum , Risk Factors
9.
J Clin Endocrinol Metab ; 108(9): e754-e768, 2023 08 18.
Article in English | MEDLINE | ID: mdl-36916904

ABSTRACT

CONTEXT: Kenny-Caffey syndrome (KCS) is a rare hereditary disorder characterized by short stature, hypoparathyroidism, and electrolyte disturbances. KCS1 and KCS2 are caused by pathogenic variants in TBCE and FAM111A, respectively. Clinically the phenotypes are difficult to distinguish. OBJECTIVE: The objective was to determine and expand the phenotypic spectrum of KCS1 and KCS2 in order to anticipate complications that may arise in these disorders. METHODS: We clinically and genetically analyzed 10 KCS2 patients from 7 families. Because we found unusual phenotypes in our cohort, we performed a systematic review of genetically confirmed KCS cases using PubMed and Scopus. Evaluation by 3 researchers led to the inclusion of 26 papers for KCS1 and 16 for KCS2, totaling 205 patients. Data were extracted following the Cochrane guidelines and assessed by 2 independent researchers. RESULTS: Several patients in our KCS2 cohort presented with intellectual disability (3/10) and chronic kidney disease (6/10), which are not considered common findings in KCS2. Systematic review of all reported KCS cases showed that the phenotypes of KCS1 and KCS2 overlap for postnatal growth retardation (KCS1: 52/52, KCS2: 23/23), low parathyroid hormone levels (121/121, 16/20), electrolyte disturbances (139/139, 24/27), dental abnormalities (47/50, 15/16), ocular abnormalities (57/60, 22/23), and seizures/spasms (103/115, 13/16). Symptoms more prevalent in KCS1 included intellectual disability (74/80, 5/24), whereas in KCS2 bone cortical thickening (1/18, 16/20) and medullary stenosis (7/46, 27/28) were more common. CONCLUSION: Our case series established chronic kidney disease as a new feature of KCS2. In the literature, we found substantial overlap in the phenotypic spectra of KCS1 and KCS2, but identified intellectual disability and the abnormal bone phenotype as the most distinguishing features.


Subject(s)
Hyperostosis, Cortical, Congenital , Hypoparathyroidism , Intellectual Disability , Humans , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Hyperostosis, Cortical, Congenital/genetics , Phenotype , Electrolytes , Hypoparathyroidism/genetics
11.
Front Cardiovasc Med ; 10: 1002438, 2023.
Article in English | MEDLINE | ID: mdl-36818331

ABSTRACT

Receptor tyrosine kinases (RTKs) are a class of membrane spanning cell-surface receptors that transmit extracellular signals through the membrane to trigger diverse intracellular signaling through tyrosine kinases (TKs), and play important role in cancer development. Therapeutic approaches targeting RTKs such as vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), and platelet-derived growth factor receptor (PDGFR), and TKs, such as c-Src, ABL, JAK, are widely used to treat human cancers. Despite favorable benefits in cancer treatment that prolong survival, these tyrosine kinase inhibitors (TKIs) and monoclonal antibodies targeting RTKs are also accompanied by adverse effects, including cardiovascular toxicity. Mechanisms underlying TKI-induced cardiovascular toxicity remain unclear. The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed chanzyme consisting of a membrane-based ion channel and intracellular α-kinase. TRPM7 is a cation channel that regulates transmembrane Mg2+ and Ca2+ and is involved in a variety of (patho)physiological processes in the cardiovascular system, contributing to hypertension, cardiac fibrosis, inflammation, and atrial arrhythmias. Of importance, we and others demonstrated significant cross-talk between TRPM7, RTKs, and TK signaling in different cell types including vascular smooth muscle cells (VSMCs), which might be a link between TKIs and their cardiovascular effects. In this review, we summarize the implications of RTK inhibitors (RTKIs) and TKIs in cardiovascular toxicities during anti-cancer treatment, with a focus on the potential role of TRPM7/Mg2+ as a mediator of RTKI/TKI-induced cardiovascular toxicity. We also describe the important role of TRPM7 in cancer development and cardiovascular diseases, and the interaction between TRPM7 and RTKs, providing insights for possible mechanisms underlying cardiovascular disease in cancer patients treated with RTKI/TKIs.

12.
J Physiol ; 601(22): 4923-4936, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35306667

ABSTRACT

Exosomes, which are membrane-bound extracellular vesicles (EVs), are generated in the endosomal compartment of almost all eukaryotic cells. They are formed upon the fusion of multivesicular bodies and the plasma membrane and carry proteins, nucleic acids, lipids and other cellular constituents from their parent cells. Multiple factors influence their production including cell stress and injury, humoral factors, circulating toxins, and oxidative stress. They play an important role in intercellular communication, through their ability to transfer their cargo (proteins, lipids, RNAs) from one cell to another. Exosomes have been implicated in the pathophysiology of various diseases including cardiovascular disease (CVD), cancer, kidney disease, and inflammatory conditions. In addition, circulating exosomes may act as biomarkers for diagnostic and prognostic strategies for several pathological processes. In particular exosome-containing miRNAs have been suggested as biomarkers for the diagnosis and prognosis of myocardial injury, stroke and endothelial dysfunction. They may also have therapeutic potential, acting as vectors to deliver therapies in a targeted manner, such as the delivery of protective miRNAs. Transfection techniques are in development to load exosomes with desired cargo, such as proteins or miRNAs, to achieve up-regulation in the host cell or tissue. These advances in the field have the potential to assist in the detection and monitoring progress of a disease in patients during its early clinical stages, as well as targeted drug delivery.


Subject(s)
Cardiovascular System , Exosomes , Extracellular Vesicles , MicroRNAs , Humans , Exosomes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cardiovascular System/metabolism , Proteins , Biomarkers/metabolism , Lipids , Extracellular Vesicles/metabolism
13.
Cell Calcium ; 106: 102639, 2022 09.
Article in English | MEDLINE | ID: mdl-36027648

ABSTRACT

The bifunctional cation channel/kinase TrpM7 is ubiquitously expressed and regulates embryonic development and pathogenesis of several common diseases. The TrpM7 integral membrane ion channel domain regulates transmembrane movement of divalent cations, and its kinase domain controls gene expression via histone phosphorylation. Mechanisms regulating TrpM7 are elusive. It exists in two populations in the cell: at the cell surface where it controls divalent cation fluxes, and in intracellular vesicles where it controls zinc uptake and release. Here we report that TrpM7 is palmitoylated at a cluster of cysteines at the C terminal end of its Trp domain. Palmitoylation controls the exit of TrpM7 from the endoplasmic reticulum and the distribution of TrpM7 between cell surface and intracellular pools. Using the Retention Using Selective Hooks (RUSH) system, we demonstrate that palmitoylated TrpM7 traffics from the Golgi to the surface membrane whereas non-palmitoylated TrpM7 is sequestered in intracellular vesicles. We identify the Golgi-resident enzyme zDHHC17 and surface membrane-resident enzyme zDHHC5 as responsible for palmitoylating TrpM7 and find that TrpM7-mediated transmembrane calcium uptake is significantly reduced when TrpM7 is not palmitoylated. The closely related channel/kinase TrpM6 is also palmitoylated on the C terminal side of its Trp domain. Our findings demonstrate that palmitoylation controls ion channel activity of TrpM7 and that TrpM7 trafficking is dependant on its palmitoylation. We define a new mechanism for post translational modification and regulation of TrpM7 and other Trps.


Subject(s)
Lipoylation , TRPM Cation Channels , Calcium/metabolism , Cations/metabolism , Phosphorylation , Signal Transduction , TRPM Cation Channels/metabolism
14.
Commun Biol ; 5(1): 746, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35882956

ABSTRACT

Hyperaldosteronism causes cardiovascular disease as well as hypomagnesemia. Mechanisms are ill-defined but dysregulation of TRPM7, a Mg2+-permeable channel/α-kinase, may be important. We examined the role of TRPM7 in aldosterone-dependent cardiovascular and renal injury by studying aldosterone-salt treated TRPM7-deficient (TRPM7+/Δkinase) mice. Plasma/tissue [Mg2+] and TRPM7 phosphorylation were reduced in vehicle-treated TRPM7+/Δkinase mice, effects recapitulated in aldosterone-salt-treated wild-type mice. Aldosterone-salt treatment exaggerated vascular dysfunction and amplified cardiovascular and renal fibrosis, with associated increased blood pressure in TRPM7+/Δkinase mice. Tissue expression of Mg2+-regulated phosphatases (PPM1A, PTEN) was downregulated and phosphorylation of Smad3, ERK1/2, and Stat1 was upregulated in aldosterone-salt TRPM7-deficient mice. Aldosterone-induced phosphorylation of pro-fibrotic signaling was increased in TRPM7+/Δkinase fibroblasts, effects ameliorated by Mg2+ supplementation. TRPM7 deficiency amplifies aldosterone-salt-induced cardiovascular remodeling and damage. We identify TRPM7 downregulation and associated hypomagnesemia as putative molecular mechanisms underlying deleterious cardiovascular and renal effects of hyperaldosteronism.


Subject(s)
Hyperaldosteronism , TRPM Cation Channels , Aldosterone/pharmacology , Animals , Fibrosis , Hyperaldosteronism/genetics , Hyperaldosteronism/metabolism , Kidney/metabolism , Magnesium/metabolism , Mice , Protein Phosphatase 2C/metabolism , Sodium Chloride , TRPM Cation Channels/deficiency , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism
15.
Cardiovasc Res ; 118(16): 3250-3268, 2022 12 29.
Article in English | MEDLINE | ID: mdl-34672341

ABSTRACT

AIMS: Interferon-stimulated gene 15 (ISG15) encodes a ubiquitin-like protein that induces a reversible post-translational modification (ISGylation) and can also be secreted as a free form. ISG15 plays an essential role as host-defence response to microbial infection; however, its contribution to vascular damage associated with hypertension is unknown. METHODS AND RESULTS: Bioinformatics identified ISG15 as a mediator of hypertension-associated vascular damage. ISG15 expression positively correlated with systolic and diastolic blood pressure and carotid intima-media thickness in human peripheral blood mononuclear cells. Consistently, Isg15 expression was enhanced in aorta from hypertension models and in angiotensin II (AngII)-treated vascular cells and macrophages. Proteomics revealed differential expression of proteins implicated in cardiovascular function, extracellular matrix and remodelling, and vascular redox state in aorta from AngII-infused ISG15-/- mice. Moreover, ISG15-/- mice were protected against AngII-induced hypertension, vascular stiffness, elastin remodelling, endothelial dysfunction, and expression of inflammatory and oxidative stress markers. Conversely, mice with excessive ISGylation (USP18C61A) show enhanced AngII-induced hypertension, vascular fibrosis, inflammation and reactive oxygen species (ROS) generation along with elastin breaks, aortic dilation, and rupture. Accordingly, human and murine abdominal aortic aneurysms showed augmented ISG15 expression. Mechanistically, ISG15 induces vascular ROS production, while antioxidant treatment prevented ISG15-induced endothelial dysfunction and vascular remodelling. CONCLUSION: ISG15 is a novel mediator of vascular damage in hypertension through oxidative stress and inflammation.


Subject(s)
Aortic Aneurysm, Abdominal , Hypertension , Mice , Humans , Animals , Elastin/metabolism , Reactive Oxygen Species/metabolism , Angiotensin II/metabolism , Interferons/metabolism , Leukocytes, Mononuclear/metabolism , Carotid Intima-Media Thickness , Oxidative Stress , Hypertension/chemically induced , Hypertension/genetics , Hypertension/metabolism , Oxidation-Reduction , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/prevention & control , Inflammation , Mice, Inbred C57BL
16.
Cardiovasc Res ; 118(5): 1359-1373, 2022 03 25.
Article in English | MEDLINE | ID: mdl-34320175

ABSTRACT

AIMS: NOX-derived reactive oxygen species (ROS) are mediators of signalling pathways implicated in vascular smooth muscle cell (VSMC) dysfunction in hypertension. Among the numerous redox-sensitive kinases important in VSMC regulation is c-Src. However, mechanisms linking NOX/ROS to c-Src are unclear, especially in the context of oxidative stress in hypertension. Here, we investigated the role of NOX-induced oxidative stress in VSMCs in human hypertension focusing on NOX5, and explored c-Src, as a putative intermediate connecting NOX5-ROS to downstream effector targets underlying VSMC dysfunction. METHODS AND RESULTS: VSMC from arteries from normotensive (NT) and hypertensive (HT) subjects were studied. NOX1,2,4,5 expression, ROS generation, oxidation/phosphorylation of signalling molecules, and actin polymerization and migration were assessed in the absence and presence of NOX5 (melittin) and Src (PP2) inhibitors. NOX5 and p22phox-dependent NOXs (NOX1-4) were down-regulated using NOX5 siRNA and p22phox-siRNA approaches. As proof of concept in intact vessels, vascular function was assessed by myography in transgenic mice expressing human NOX5 in a VSMC-specific manner. In HT VSMCs, NOX5 was up-regulated, with associated oxidative stress, hyperoxidation (c-Src, peroxiredoxin, DJ-1), and hyperphosphorylation (c-Src, PKC, ERK1/2, MLC20) of signalling molecules. NOX5 siRNA reduced ROS generation in NT and HT subjects. NOX5 siRNA, but not p22phox-siRNA, blunted c-Src phosphorylation in HT VSMCs. NOX5 siRNA reduced phosphorylation of MLC20 and FAK in NT and HT. In p22phox- silenced HT VSMCs, Ang II-induced phosphorylation of MLC20 was increased, effects blocked by melittin and PP2. NOX5 and c-Src inhibition attenuated actin polymerization and migration in HT VSMCs. In NOX5 transgenic mice, vascular hypercontractilty was decreased by melittin and PP2. CONCLUSION: We define NOX5/ROS/c-Src as a novel feedforward signalling network in human VSMCs. Amplification of this system in hypertension contributes to VSMC dysfunction. Dampening the NOX5/ROS/c-Src pathway may ameliorate hypertension-associated vascular injury.


Subject(s)
Hypertension , Muscle, Smooth, Vascular , Actins/metabolism , Angiotensin II/metabolism , Animals , Cells, Cultured , Humans , Melitten/metabolism , Melitten/pharmacology , Mice , Mice, Transgenic , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , NADPH Oxidase 5/genetics , NADPH Oxidase 5/metabolism , NADPH Oxidase 5/pharmacology , Oxidation-Reduction , Protein-Tyrosine Kinases/metabolism , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism
18.
Clin Sci (Lond) ; 135(15): 1845-1858, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34269800

ABSTRACT

OBJECTIVE: The mechanisms involved in NOX5 activation in atherosclerotic processes are not completely understood. The present study tested the hypothesis that lysophosphatidylcholine (LPC), a proatherogenic component of oxLDL, induces endothelial calcium influx, which drives NOX5-dependent reactive oxygen species (ROS) production, oxidative stress, and endothelial cell dysfunction. APPROACH: Human aortic endothelial cells (HAEC) were stimulated with LPC (10-5 M, for different time points). Pharmacological inhibition of NOX5 (Melittin, 10-7 M) and NOX5 gene silencing (siRNA) was used to determine the role of NOX5-dependent ROS production in endothelial oxidative stress induced by LPC. ROS production was determined by lucigenin assay and electron paramagnetic spectroscopy (EPR), calcium transients by Fluo4 fluorimetry, and NOX5 activity and protein expression by pharmacological assays and immunoblotting, respectively. RESULTS: LPC increased ROS generation in endothelial cells at short (15 min) and long (4 h) stimulation times. LPC-induced ROS was abolished by a selective NOX5 inhibitor and by NOX5 siRNA. NOX1/4 dual inhibition and selective NOX1 inhibition only decreased ROS generation at 4 h. LPC increased HAEC intracellular calcium, important for NOX5 activation, and this was blocked by nifedipine and thapsigargin. Bapta-AM, selective Ca2+ chelator, prevented LPC-induced ROS production. NOX5 knockdown decreased LPC-induced ICAM-1 mRNA expression and monocyte adhesion to endothelial cells. CONCLUSION: These results suggest that NOX5, by mechanisms linked to increased intracellular calcium, is key to early LPC-induced endothelial oxidative stress and pro-inflammatory processes. Since these are essential events in the formation and progression of atherosclerotic lesions, the present study highlights an important role for NOX5 in atherosclerosis.


Subject(s)
Atherosclerosis/enzymology , Endothelial Cells/drug effects , Lysophosphatidylcholines/toxicity , NADPH Oxidase 5/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Atherosclerosis/pathology , Calcium/metabolism , Calcium Signaling , Cell Adhesion , Cells, Cultured , Coculture Techniques , Endothelial Cells/enzymology , Endothelial Cells/pathology , Enzyme Activation , Enzyme Inhibitors/pharmacology , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Monocytes/metabolism , NADPH Oxidase 5/antagonists & inhibitors , NADPH Oxidase 5/genetics , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL
...