Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Science ; 382(6667): 155-156, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824634

ABSTRACT

Phosphatidylinositol 3,5-bisphosphate enables transport of proteins to synaptic sites.


Subject(s)
Phosphatidylinositol Phosphates , Signal Transduction , Synapses , Animals , Humans , Mice , Neurogenesis , Protein Transport , Synapses/metabolism , Phosphatidylinositol Phosphates/metabolism
2.
Zootaxa ; 5297(2): 228-238, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37518799

ABSTRACT

The Galician Bank (GB) is a seamount located 180 km away from the Galician coast (Northwest Spain), in the Northeast Atlantic Ocean. The summit occurs at a depth between 650 and 1500 m with the maximum depth reaching 4000 m (the abyssal bottom). The water masses, twists, eddies, and geomorphology favour the retention of nutrients and larvae, thus, being an area rich in nutrients. It is a hotspot of biodiversity and an important place for benthic communities. This study aims to inventory and review the asteroid fauna collected during the LIFE+INDEMARES project in GB, compare the new findings with previous studies Official Spanish Checklist (IEEM: "Inventario Español de Especies Marinas", Manjón-Cabeza et al. 2017, 2020) and update our knowledge of the diversity and distribution of known species. In this study a total of 272 asteroid specimens belonging to 19 species were found at 45 stations in depths between 765-1764 m, as part of the LIFE+INDEMARES-Galician Bank (2010-2011) surveys. The most frequently encountered species were Plinthaster dentatus (Perrier, 1884), Peltaster placenta (Müller & Troschel, 1842) and Henricia caudani (Koehler, 1895). Circeaster americanus (A.H. Clark, 1916) and Hymenaster giboryi (Perrier, 1894) are new observations from this area. For several species, including Henricia caudani, Pedicellaster typicus M. Sars, 1861, Podosphaeraster thalassae Cherbonnier, 1970 and Hymenaster giboryi known bathymetric range has been extended.


Subject(s)
Echinodermata , Starfish , Animals , Atlantic Ocean , Biodiversity , Larva
3.
J Cell Biol ; 222(7)2023 07 03.
Article in English | MEDLINE | ID: mdl-37141105

ABSTRACT

Trafficking of cell-surface proteins from endosomes to the plasma membrane is a key mechanism to regulate synaptic function. In non-neuronal cells, proteins recycle to the plasma membrane either via the SNX27-Retromer-WASH pathway or via the recently discovered SNX17-Retriever-CCC-WASH pathway. While SNX27 is responsible for the recycling of key neuronal receptors, the roles of SNX17 in neurons are less understood. Here, using cultured hippocampal neurons, we demonstrate that the SNX17 pathway regulates synaptic function and plasticity. Disruption of this pathway results in a loss of excitatory synapses and prevents structural plasticity during chemical long-term potentiation (cLTP). cLTP drives SNX17 recruitment to synapses, where its roles are in part mediated by regulating the surface expression of ß1-integrin. SNX17 recruitment relies on NMDAR activation, CaMKII signaling, and requires binding to the Retriever and PI(3)P. Together, these findings provide molecular insights into the regulation of SNX17 at synapses and define key roles for SNX17 in synaptic maintenance and in regulating enduring forms of synaptic plasticity.


Subject(s)
Long-Term Potentiation , Membrane Proteins , Neuronal Plasticity , Sorting Nexins , Cell Membrane/physiology , Membrane Proteins/physiology , Protein Transport , Synapses/physiology , Sorting Nexins/physiology , Cells, Cultured , Neurons/physiology
4.
Autophagy Rep ; 2(1)2023.
Article in English | MEDLINE | ID: mdl-37064812

ABSTRACT

Many neurodegenerative diseases, including Huntington's disease (HD) and Alzheimer's disease (AD), occur due to an accumulation of aggregation-prone proteins, which results in neuronal death. Studies in animal and cell models show that reducing the levels of these proteins mitigates disease phenotypes. We previously reported a small molecule, NCT-504, which reduces cellular levels of mutant huntingtin (mHTT) in patient fibroblasts as well as mouse striatal and cortical neurons from an HdhQ111 mutant mouse. Here, we show that NCT-504 has a broader potential, and in addition reduces levels of Tau, a protein associated with Alzheimer's disease, as well as other tauopathies. We find that in untreated cells, Tau and mHTT are degraded via autophagy. Notably, treatment with NCT-504 diverts these proteins to multivesicular bodies (MVB) and the ESCRT pathway. Specifically, NCT-504 causes a proliferation of endolysosomal organelles including MVB, and an enhanced association of mHTT and Tau with endosomes and MVB. Importantly, depletion of proteins that act late in the ESCRT pathway blocked NCT-504 dependent degradation of Tau. Moreover, NCT-504-mediated degradation of Tau occurred in cells where Atg7 is depleted, which indicates that this pathway is independent of canonical autophagy. Together, these studies reveal that upregulation of traffic through an ESCRT-dependent MVB pathway may provide a therapeutic approach for neurodegenerative diseases.

5.
Cell Death Dis ; 13(12): 1047, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36522443

ABSTRACT

Increased brain iron content has been consistently reported in sporadic Parkinson's disease (PD) patients, and an increase in cytosolic free iron is known to cause oxidative stress and cell death. However, whether iron also accumulates in susceptible brain areas in humans or in mouse models of familial PD remains unknown. In addition, whilst the lysosome functions as a critical intracellular iron storage organelle, little is known about the mechanisms underlying lysosomal iron release and how this process is influenced by lysosome biogenesis and/or lysosomal exocytosis. Here, we report an increase in brain iron content also in PD patients due to the common G2019S-LRRK2 mutation as compared to healthy age-matched controls, whilst differences in iron content are not observed in G2019S-LRRK2 knockin as compared to control mice. Chemically triggering iron overload in cultured cells causes cytotoxicity via the endolysosomal release of iron which is mediated by TRPML1. TFEB expression reverts the iron overload-associated cytotoxicity by causing lysosomal exocytosis, which is dependent on a TRPML1-mediated increase in cytosolic calcium levels. Therefore, approaches aimed at increasing TFEB levels, or pharmacological TRPML1 activation in conjunction with iron chelation may prove beneficial against cell death associated with iron overload conditions such as those associated with PD.


Subject(s)
Iron Overload , Transient Receptor Potential Channels , Humans , Mice , Animals , Iron/metabolism , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism , Calcium/metabolism , Lysosomes/metabolism , Iron Overload/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
7.
Nat Commun ; 13(1): 5160, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36056000

ABSTRACT

In the deep ocean symbioses between microbes and invertebrates are emerging as key drivers of ecosystem health and services. We present a large-scale analysis of microbial diversity in deep-sea sponges (Porifera) from scales of sponge individuals to ocean basins, covering 52 locations, 1077 host individuals translating into 169 sponge species (including understudied glass sponges), and 469 reference samples, collected anew during 21 ship-based expeditions. We demonstrate the impacts of the sponge microbial abundance status, geographic distance, sponge phylogeny, and the physical-biogeochemical environment as drivers of microbiome composition, in descending order of relevance. Our study further discloses that fundamental concepts of sponge microbiology apply robustly to sponges from the deep-sea across distances of >10,000 km. Deep-sea sponge microbiomes are less complex, yet more heterogeneous, than their shallow-water counterparts. Our analysis underscores the uniqueness of each deep-sea sponge ground based on which we provide critical knowledge for conservation of these vulnerable ecosystems.


Subject(s)
Microbiota , Porifera , Animals , Biodiversity , Phylogeny , Symbiosis
8.
Curr Opin Cell Biol ; 76: 102086, 2022 06.
Article in English | MEDLINE | ID: mdl-35584589

ABSTRACT

Phosphoinositide signaling lipids are crucial for eukaryotes and regulate many aspects of cell function. These signaling molecules are difficult to study because they are extremely low abundance. Here, we focus on two of the lowest abundance phosphoinositides, PI(3,5)P2 and PI(5)P, which play critical roles in cellular homeostasis, membrane trafficking and transcription. Their levels are tightly regulated by a protein complex that includes PIKfyve, Fig4 and Vac14. Importantly, mutations in this complex that decrease PI(3,5)P2 and PI(5)P are linked to human diseases, especially those of the nervous system. Paradoxically, PIKfyve inhibitors which decrease PI(3,5)P2 and PI(5)P, are currently being tested for some neurodegenerative diseases, as well as other diverse diseases including some cancers, and as a treatment for SARS-CoV2 infection. A more comprehensive picture of the pathways that are regulated by PIKfyve will be critical to understand the roles of PI(3,5)P2 and PI(5)P in normal human physiology and in disease.


Subject(s)
COVID-19 Drug Treatment , Phosphatidylinositol Phosphates , Flavoproteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Membrane Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositols , Phosphoric Monoester Hydrolases , RNA, Viral , SARS-CoV-2
9.
Elife ; 112022 01 18.
Article in English | MEDLINE | ID: mdl-35040777

ABSTRACT

Cell surface receptors control how cells respond to their environment. Many cell surface receptors recycle from endosomes to the plasma membrane via a recently discovered pathway, which includes sorting-nexin SNX17, Retriever, WASH, and CCC complexes. Here, using mammalian cells, we discover that PIKfyve and its upstream PI3-kinase VPS34 positively regulate this pathway. VPS34 produces phosphatidylinositol 3-phosphate (PI3P), which is the substrate for PIKfyve to generate PI3,5P2. We show that PIKfyve controls recycling of cargoes including integrins, receptors that control cell migration. Furthermore, endogenous PIKfyve colocalizes with SNX17, Retriever, WASH, and CCC complexes on endosomes. Importantly, PIKfyve inhibition results in displacement of Retriever and CCC from endosomes. In addition, we show that recruitment of SNX17 is an early step and requires VPS34. These discoveries suggest that VPS34 and PIKfyve coordinate an ordered pathway to regulate recycling from endosomes and suggest how PIKfyve functions in cell migration.


Subject(s)
Cell Membrane/metabolism , Endosomes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositols/metabolism , Animals , Cell Line , Cell Membrane/chemistry , Class III Phosphatidylinositol 3-Kinases/metabolism , HEK293 Cells , HeLa Cells , Humans , Mice
10.
PeerJ ; 9: e12515, 2021.
Article in English | MEDLINE | ID: mdl-35036117

ABSTRACT

Sponges are amongst the most difficult benthic taxa to properly identify, which has led to a prevalence of cryptic species in several sponge genera, especially in those with simple skeletons. This is particularly true for sponges living in remote or hardly accessible environments, such as the deep-sea, as the inaccessibility of their habitat and the lack of accurate descriptions usually leads to misclassifications. However, species can also remain hidden even when they belong to genera that have particularly characteristic features. In these cases, researchers inevitably pay attention to these peculiar features, sometimes disregarding small differences in the other "typical" spicules. The genus Melonanchora Carter, 1874, is among those well suited for a revision, as their representatives possess a unique type of spicule (spherancorae). After a thorough review of the material available for this genus from several institutions, four new species of Melonanchora, M. tumultuosa sp. nov., M. insulsa sp. nov., M. intermedia sp. nov. and M. maeli sp. nov. are formally described from different localities across the Atlanto-Mediterranean region. Additionally, all Melonanchora from the Okhotsk Sea and nearby areas are reassigned to other genera; Melonanchora kobjakovae is transferred to Myxilla (Burtonanchora) while two new genera, Hanstoreia gen. nov. and Arhythmata gen. nov. are created to accommodate Melonanchora globogilva and Melonanchora tetradedritifera, respectively. Hanstoreia gen. nov. is closest to Melonanchora, whereas Arhythmata gen. nov., is closer to Stelodoryx, which is most likely polyphyletic and in need of revision.

11.
Front Microbiol ; 11: 1636, 2020.
Article in English | MEDLINE | ID: mdl-32793148

ABSTRACT

The peripheral areas of deep-sea hydrothermal vents are often inhabited by an assemblage of animals distinct to those living close to vent chimneys. For many such taxa, it is considered that peak abundances in the vent periphery relate to the availability of hard substrate as well as the increased concentrations of organic matter generated at vents, compared to background areas. However, the peripheries of vents are less well-studied than the assemblages of vent-endemic taxa, and the mechanisms through which peripheral fauna may benefit from vent environments are generally unknown. Understanding this is crucial for evaluating the sphere of influence of hydrothermal vents and managing the impacts of future human activity within these environments, as well as offering insights into the processes of metazoan adaptation to vents. In this study, we explored the evolutionary histories, microbiomes and nutritional sources of two distantly-related sponge types living at the periphery of active hydrothermal vents in two different geological settings (Cladorhiza from the E2 vent site on the East Scotia Ridge, Southern Ocean, and Spinularia from the Endeavour vent site on the Juan de Fuca Ridge, North-East Pacific) to examine their relationship to nearby venting. Our results uncovered a close sister relationship between the majority of our E2 Cladorhiza specimens and the species Cladorhiza methanophila, known to harbor and obtain nutrition from methanotrophic symbionts at cold seeps. Our microbiome analyses demonstrated that both E2 Cladorhiza and Endeavour Spinularia sp. are associated with putative chemosynthetic Gammaproteobacteria, including Thioglobaceae (present in both sponge types) and Methylomonaceae (present in Spinularia sp.). These bacteria are closely related to chemoautotrophic symbionts of bathymodiolin mussels. Both vent-peripheral sponges demonstrate carbon and nitrogen isotopic signatures consistent with contributions to nutrition from chemosynthesis. This study expands the number of known associations between metazoans and potentially chemosynthetic Gammaproteobacteria, indicating that they can be incredibly widespread and also occur away from the immediate vicinity of chemosynthetic environments in the vent-periphery, where these sponges may be adapted to benefit from dispersed vent fluids.

12.
Cells ; 9(7)2020 07 17.
Article in English | MEDLINE | ID: mdl-32709066

ABSTRACT

Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) cause familial Parkinson's disease, and sequence variations are associated with the sporadic form of the disease. LRRK2 phosphorylates a subset of RAB proteins implicated in secretory and recycling trafficking pathways, including RAB8A and RAB10. Another RAB protein, RAB29, has been reported to recruit LRRK2 to the Golgi, where it stimulates its kinase activity. Our previous studies revealed that G2019S LRRK2 expression or knockdown of RAB8A deregulate epidermal growth factor receptor (EGFR) trafficking, with a concomitant accumulation of the receptor in a RAB4-positive recycling compartment. Here, we show that the G2019S LRRK2-mediated EGFR deficits are mimicked by knockdown of RAB10 and rescued by expression of active RAB10. By contrast, RAB29 knockdown is without effect, but expression of RAB29 also rescues the pathogenic LRRK2-mediated trafficking deficits independently of Golgi integrity. Our data suggest that G2019S LRRK2 deregulates endolysosomal trafficking by impairing the function of RAB8A and RAB10, while RAB29 positively modulates non-Golgi-related trafficking events impaired by pathogenic LRRK2.


Subject(s)
Endosomes/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Lysosomes/metabolism , rab GTP-Binding Proteins/metabolism , Epidermal Growth Factor/metabolism , Gene Knockdown Techniques , Golgi Apparatus/metabolism , HeLa Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation/genetics , Protein Transport , Proteolysis , rab4 GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
13.
Front Neurosci ; 14: 556, 2020.
Article in English | MEDLINE | ID: mdl-32581693

ABSTRACT

Mutations in the gene encoding for leucine-rich repeat kinase 2 (LRRK2) are associated with both familial and sporadic Parkinson's disease (PD). LRRK2 encodes a large protein comprised of a GTPase and a kinase domain. All pathogenic variants converge on enhancing LRRK2 kinase substrate phosphorylation, and distinct LRRK2 kinase inhibitors are currently in various stages of clinical trials. Although the precise pathophysiological functions of LRRK2 remain largely unknown, PD-associated mutants have been shown to alter various intracellular vesicular trafficking pathways, especially those related to endolysosomal protein degradation events. In addition, biochemical studies have identified a subset of Rab proteins, small GTPases required for all vesicular trafficking steps, as substrate proteins for the LRRK2 kinase activity in vitro and in vivo. Therefore, it is crucial to evaluate the impact of such phosphorylation on neurodegenerative mechanisms underlying LRRK2-related PD, especially with respect to deregulated Rab-mediated endolysosomal membrane trafficking and protein degradation events. Surprisingly, a significant proportion of PD patients due to LRRK2 mutations display neuronal cell loss in the substantia nigra pars compacta in the absence of any apparent α-synuclein-containing Lewy body neuropathology. These findings suggest that endolysosomal alterations mediated by pathogenic LRRK2 per se are not sufficient to cause α-synuclein aggregation. Here, we will review current knowledge about the link between pathogenic LRRK2, Rab protein phosphorylation and endolysosomal trafficking alterations, and we will propose a testable working model whereby LRRK2-related PD may present with variable LB pathology.

14.
PeerJ ; 8: e8703, 2020.
Article in English | MEDLINE | ID: mdl-32292645

ABSTRACT

BACKGROUND: Lithistid demosponges, also known as rock sponges, are a polyphyletic group of sponges which are widely distributed. In the Northeast Atlantic (NEA), 17 species are known and the current knowledge on their distribution is mainly restricted to the Macaronesian islands. In the Mediterranean Sea, 14 species are recorded and generally found in marine caves. METHODS: Lithistids were sampled in nine NEA seamounts during the scientific expeditions Seamount 1 (1987) and Seamount 2 (1993) organized by the MNHN of Paris. Collected specimens were identified through the analyses of external and internal morphological characters using light and scanning electron microscopy, and compared with material from various museum collections as well as literature records. RESULTS: A total of 68 specimens were analysed and attributed to 17 species across two orders, seven families, and seven genera, representing new records of distribution. Ten of these species are new to science, viz. Neoschrammeniella inaequalis sp. nov., N. piserai sp. nov., N. pomponiae sp. nov., Discodermia arbor sp. nov., D. kellyae sp. nov., Macandrewia schusterae sp. nov., M. minima sp. nov., Exsuperantia levii sp. nov., Leiodermatium tuba sp. nov. and Siphonidium elongatus sp. nov., and are here described and illustrated. New bathymetric records were also found for D. ramifera, D. verrucosa and M. robusta. The Meteor seamount group has a higher species richness (15 species) compared to the Lusitanian seamount group (six species). The majority of the species had their distribution restricted to one seamount, and ten are only known from a single locality, but this can be a result of sample bias. DISCUSSION: The number of species shared between the seamounts and the Macaronesian islands is very reduced. The same pattern repeats between the NEA and Mediterranean Sea. This study demonstrates that NEA seamounts are ecosystems with a higher diversity of lithistids than previously thought, increasing the number of lithistids known to occur in the NEA and Mediterranean Sea from 26 to 36 species.

15.
J Biol Chem ; 294(13): 4738-4758, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30709905

ABSTRACT

Mutations in the gene encoding for leucine-rich repeat kinase 2 (LRRK2) are a common cause of hereditary Parkinson's disease. LRRK2 regulates various intracellular vesicular trafficking pathways, including endolysosomal degradative events such as epidermal growth factor receptor (EGFR) degradation. Recent studies have revealed that a subset of RAB proteins involved in secretory and endocytic recycling are LRRK2 kinase substrates in vivo However, the effects of LRRK2-mediated phosphorylation of these substrates on membrane trafficking remain unknown. Here, using an array of immunofluorescence and pulldown assays, we report that expression of active or phosphodeficient RAB8A variants rescues the G2019S LRRK2-mediated effects on endolysosomal membrane trafficking. Similarly, up-regulation of the RAB11-Rabin8-RAB8A cascade, which activates RAB8A, also reverted these trafficking deficits. Loss of RAB8A mimicked the effects of G2019S LRRK2 on endolysosomal trafficking and decreased RAB7A activity. Expression of pathogenic G2019S LRRK2 or loss of RAB8A interfered with EGFR degradation by causing its accumulation in a RAB4-positive endocytic compartment, which was accompanied by a deficit in EGFR recycling and was rescued upon expression of active RAB7A. Dominant-negative RAB7A expression resulted in similar deficits in EGF degradation, accumulation in a RAB4 compartment, and deficits in EGFR recycling, which were all rescued upon expression of active RAB8A. Taken together, these findings suggest that, by impairing RAB8A function, pathogenic G2019S LRRK2 deregulates endolysosomal transport and endocytic recycling events.


Subject(s)
Endosomes/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Lysosomes/metabolism , Mutation, Missense , rab GTP-Binding Proteins/metabolism , Amino Acid Substitution , Endosomes/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Germinal Center Kinases , HEK293 Cells , HeLa Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Lysosomes/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Transport/genetics , Proteolysis , rab GTP-Binding Proteins/genetics
16.
Zootaxa ; 4466(1): 95-123, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30313442

ABSTRACT

Artemisina Vosmaer, 1885 is a poecilosclerid microcionoid sponge genus with 20 valid species, seven of which have been recorded in the Atlantic Ocean.The present study describes Artemisina sponge grounds in Iberia Peninsula. A. transiens is a sponge described in 1890 by Topsent in Galicia (Spain); A. hispanica was also collected in the north of Spain by Ferrer-Hernández (1917); World Porifera Database (WPD) considers at the moment both mushroom-shaped species as synonyms (van Soest et al., 2018), but we have only been able to check the types of A. hispanica. The studied samples were collected in Somos Llungo station and they correspond clearly to those described as A. hispanica by Ferrer-Hernández (1917) and it presents differences in the skeleton with respet to description of A. transiens in the literture. There are no more records after 1917 and there are no data of ecological characterisation nor is there a detailed description of its skeletal composition with Scanning Electron Microscopy. In the previous records the formation of sponge grounds of these species was not known.                                                                                                                          Oceana, the largest international organization focused solely on protecting the world's oceans, has recorded the habitat of Artemisina in Atlantic and Cantabrian waters during a series of ROV cruises for the identification of marine areas with high ecological value that need protection. Its life conditions and associated fauna are described from direct observations for the first time.


Subject(s)
Porifera , Animals , Atlantic Ocean , Ecology , Spain
17.
Zootaxa ; 4466(1): 164-173, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30313445

ABSTRACT

This study describes a new species of carnivorous sponge (Family Cladorhizidae) collected in Patagonia, SW Atlantic, off Argentinean waters and the North of the Falkland Islands (Malvinas). The species described here, belongs to the genus Abyssocladia and was collected by dredging and trawling during IEO (Spanish Institute of Oceanography) cruises in the South West Atlantic Ocean from 2007 to 2010 under the Atlantis Project. Abyssocladia vaceleti sp. nov. is characterised by the possession of a long peduncle and flat body with bilaterally symmetrical and apical filaments with a skeleton of tornotes (often polytylotes), styles, abyssochelae, arcuate chelae, sigmancistras and acanthotylostrongyles. This species lives at depths of 901-1547 m.


Subject(s)
Carnivory , Porifera , Animals , Atlantic Ocean , Falkland Islands
18.
PLoS One ; 13(2): e0192267, 2018.
Article in English | MEDLINE | ID: mdl-29420669

ABSTRACT

Sponges are a dominant element of the Antarctic benthic communities, posing both high species richness and large population densities. Despite their importance in Antarctic ecosystems, very little is known about their reproductive patterns and strategies. In our study, we surveyed the tissue of six different species for reproductive elements, namely, Dendrilla antarctica Topsent, 1905 (order Dendroceratida), Phorbas areolatus (Thiele, 1905), Kirkpatrickia variolosa (Kirkpatrick, 1907), and Isodictya kerguelenensis (Ridley & Dendy, 1886) (order Poecilosclerida), and Hemigellius pilosus (Kirkpatrick, 1907) and Haliclona penicillata (Topsent, 1908) (Haplosclerida). Samples of these six species containing various reproductive elements were collected in Deception Island and were processed for both light and transmission electron microscopy (TEM). Even though we were not able to monitor the entire reproductive cycle, due to time and meteorological conditions, we report important aspects of the reproduction of these species. This includes oocyte and embryo morphology and cell ultrastructure, follicular structures and nurse cell activity, as well as vitellogenesis. All species were brooding their embryos within their mesohyl. Both oocytes and embryos were registered in the majority of the studied species, and a single sperm cell being carried to an egg for fertilization was observed in H. penicillata. While the reproductive periods of all species coincided temporally, some of them seemed to rely on a single spawning event, this being suggested by the synchronic oogenesis and embryogenesis occurrence of D. antarctica, P. areolatus and I. kerguelenensis. In contrast, K. variolosa had an asynchronous embryo development, which suggests several larval release events. Our results suggest that differences in the reproductive strategies and morphological traits might succeed in the coexistence of these species at the same habitat avoiding the direct competition between them.


Subject(s)
Porifera/physiology , Animals , Antarctic Regions , Embryo, Nonmammalian/cytology , Oocytes/cytology
19.
Biochem Soc Trans ; 45(1): 147-154, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28202668

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) is a key player in the pathogenesis of Parkinson's disease. Mutations in LRRK2 are associated with increased kinase activity that correlates with cytotoxicity, indicating that kinase inhibitors may comprise promising disease-modifying compounds. However, before embarking on such strategies, detailed knowledge of the cellular deficits mediated by pathogenic LRRK2 in the context of defined and pathologically relevant kinase substrates is essential. LRRK2 has been consistently shown to impair various intracellular vesicular trafficking events, and recent studies have shown that LRRK2 can phosphorylate a subset of proteins that are intricately implicated in those processes. In light of these findings, we here review the link between cellular deficits in intracellular trafficking pathways and the LRRK2-mediated phosphorylation of those newly identified substrates.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease/enzymology , Transport Vesicles/metabolism , rab GTP-Binding Proteins/metabolism , Amino Acid Sequence , Animals , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Models, Biological , Mutation , Parkinson Disease/genetics , Parkinson Disease/metabolism , Phosphorylation , Sequence Homology, Amino Acid , Substrate Specificity , rab GTP-Binding Proteins/genetics
20.
Curr Protein Pept Sci ; 18(7): 677-686, 2017.
Article in English | MEDLINE | ID: mdl-26965688

ABSTRACT

Mutations in LRRK2 comprise the most common cause for familial Parkinson's disease (PD), and variations increase risk for sporadic disease, implicating LRRK2 in the entire disease spectrum. LRRK2 is a large protein harbouring both GTPase and kinase domains which display measurable catalytic activity. Most pathogenic mutations increase the kinase activity, with increased activity being cytotoxic under certain conditions. These findings have spurred great interest in drug development approaches, and various specific LRRK2 kinase inhibitors have been developed. However, LRRK2 is a largely ubiquitously expressed protein, and inhibiting its function in some non-neuronal tissues has raised safety liability issues for kinase inhibitor approaches. Therefore, understanding the cellular and cell type-specific role(s) of LRRK2 has become of paramount importance. This review will highlight current knowledge on the precise biochemical activities of normal and pathogenic LRRK2, and highlight the most common proposed cellular roles so as to gain a better understanding of the cell type-specific effects of LRRK2 modulators.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation , Neurons/metabolism , Parkinson Disease/genetics , Aminopyridines/pharmacology , Antiparkinson Agents/pharmacology , Autophagy/drug effects , Autophagy/genetics , Benzamides/pharmacology , Endocytosis/drug effects , Gene Expression , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Neurons/drug effects , Neurons/pathology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Domains , Protein Kinase Inhibitors/pharmacology , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab1 GTP-Binding Proteins/genetics , rab1 GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...