Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 101: 806-17, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26231081

ABSTRACT

Diphenyl-based bis(2-iminoimidazolidines) are promising antiprotozoal agents that are curative in mouse models of stage 1 trypanosomiasis but devoid of activity in the late-stage disease, possibly due to poor brain penetration caused by their dicationic nature. We present here a strategy consisting in reducing the pKa of the basic 2-iminoimidazolidine groups though the introduction of chlorophenyl, fluorophenyl and pyridyl ring in the structure of the trypanocidal lead 4-(imidazolidin-2-ylideneamino)-N-(4-(imidazolidin-2-ylideneamino)phenyl)benzamide (1). The new compounds showed reduced pKa values (in the range 1-3 pKa units) for the imidazolidine group linked to the substituted phenyl ring. In vitro activities (EC50) against wild type and resistant strains of T. b. brucei (s427 and B48, respectively) were in the submicromolar range with four compounds being more active and selective than 1 (SI > 340). In particular, the two most potent compounds (3b and 5a) acted approximately 6-times faster than 1 to kill trypanosomes in vitro. No cross-resistance with the diamidine and melaminophenyl class of trypanocides was observed indicating that these compounds represent interesting leads for further in vivo studies.


Subject(s)
Halogens/chemistry , Imidazolines/chemistry , Imidazolines/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Imidazolines/chemical synthesis , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis
2.
Antimicrob Agents Chemother ; 59(2): 890-904, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25421467

ABSTRACT

Treatment of late-stage sleeping sickness requires drugs that can cross the blood-brain barrier (BBB) to reach the parasites located in the brain. We report here the synthesis and evaluation of four new N-hydroxy and 12 new N-alkoxy derivatives of bisimidazoline leads as potential agents for the treatment of late-stage sleeping sickness. These compounds, which have reduced basicity compared to the parent leads (i.e., are less ionized at physiological pH), were evaluated in vitro against Trypanosoma brucei rhodesiense and in vivo in murine models of first- and second-stage sleeping sickness. Resistance profile, physicochemical parameters, in vitro BBB permeability, and microsomal stability also were determined. The N-hydroxy imidazoline analogues were the most effective in vivo, with 4-((1-hydroxy-4,5-dihydro-1H-imidazol-2-yl)amino)-N-(4-((1-hydroxy-4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)benzamide (14d) showing 100% cures in the first-stage disease, while 15d, 16d, and 17d appeared to slightly improve survival. In addition, 14d showed weak activity in the chronic model of central nervous system infection in mice. No evidence of reduction of this compound with hepatic microsomes and mitochondria was found in vitro, suggesting that N-hydroxy imidazolines are metabolically stable and have intrinsic activity against T. brucei. In contrast to its unsubstituted parent compound, the uptake of 14d in T. brucei was independent of known drug transporters (i.e., T. brucei AT1/P2 and HAPT), indicating a lower predisposition to cross-resistance with other diamidines and arsenical drugs. Hence, the N-hydroxy bisimidazolines (14d in particular) represent a new class of promising antitrypanosomal agents.


Subject(s)
Trypanocidal Agents/therapeutic use , Trypanosoma brucei brucei/pathogenicity , Trypanosoma brucei rhodesiense/pathogenicity , Trypanosomiasis, African/drug therapy , Animals , Disease Models, Animal , Female , Imidazolines/therapeutic use , Mice , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei rhodesiense/drug effects
3.
Eur J Med Chem ; 81: 481-91, 2014 Jun 23.
Article in English | MEDLINE | ID: mdl-24865793

ABSTRACT

Two series of N-alkyl, N-alkoxy, and N-hydroxy bisguanidines derived from the N-phenylbenzamide and 1,3-diphenylurea scaffolds were synthesised in three steps from the corresponding 4-amino-N-(4-aminophenyl)benzamide and 1,3-bis(4-aminophenyl)urea, respectively. All of the new compounds were evaluated in vitro against T. b. rhodesiense (STIB900) trypomastigotes and Plasmodium falciparum NF54 parasites (erythrocytic stage). N-alkoxy and N-hydroxy derivatives showed weak micromolar range IC50 values against T. b. rhodesiense and P. falciparum whereas the N-alkyl analogues displayed submicromolar and low nanomolar IC50 values against P. falciparum and Trypanosoma brucei, respectively. Two compounds, 4-(2-ethylguanidino)-N-(4-(2-ethylguanidino)phenyl)benzamide dihydrochloride (7b) and 4-(2-isopropylguanidino)-N-(4-(2-isopropylguanidino)phenyl)benzamide dihydrochloride (7c), which showed favourable drug-like properties and in vivo efficacy (100% cures) in the STIB900 mouse model of acute human African trypanosomiasis represent interesting leads for further in vivo studies. The binding of these compounds to AT-rich DNA was confirmed by surface plasmon resonance (SPR) biosensor experiments.


Subject(s)
Antiparasitic Agents/pharmacology , Benzamides/pharmacology , DNA/metabolism , Guanidines/pharmacology , Plasmodium falciparum/drug effects , Trypanosoma brucei rhodesiense/drug effects , Trypanosomiasis, African/parasitology , Urea/analogs & derivatives , Animals , Antiparasitic Agents/administration & dosage , Antiparasitic Agents/chemical synthesis , Benzamides/administration & dosage , Benzamides/chemical synthesis , Benzamides/chemistry , Binding Sites/drug effects , Cell Line , Cell Survival/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Guanidines/administration & dosage , Guanidines/chemical synthesis , Mice , Mice, Inbred Strains , Molecular Structure , Parasitic Sensitivity Tests , Rats , Structure-Activity Relationship , Surface Plasmon Resonance , Trypanosomiasis, African/drug therapy , Urea/administration & dosage , Urea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...