Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 58(12): 4654-4665, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34629530

ABSTRACT

Mexico is an extensively diverse country with a wide variety of wild species of blackberries (Rubus spp.), which are rich in bioactive compounds, however, these fruits are underutilized. Fermentation is a process that transforms the chemical compounds of fruits and increases nutraceutical properties. This study aimed to determine the physicochemical changes and the bioactive compounds profile that take place during the fermentation of wild blackberries using yeast EC 1118 and to evaluate its relationship with antioxidant activity (AOx). The results indicated that after 96 h of fermentation the content of carbohydrates (56%), total phenolic compounds (37%), and anthocyanins (22%), decreased, respectively. The physicochemical parameters showed statistic differences (p ≤ 0.05) at the endpoint of fermentation. The diversity of fatty acids was increased (55%), compared with unfermented blackberries. The modification of carbohydrates, anthocyanins, catechin, gallic and ellagic acid profiles were also monitored performing chromatographic techniques. The AOx, determined by ORAC and DPPH assays, showed the highest results for ORAC at 96 h increased a 140.2%, while DPPH values enhanced a 36.6% at 48 h of bioprocessing. Strong positive correlations were found between fermentation time and DPPH values (r = 0.8131), between ORAC and gallic acid content (r = 0.8688), and between anthocyanin content and pH (r = 0.9126). The fermentation of wild blackberries with EC 1118 yeast represents an alternative for development and formulation of potential ingredients for functional foods. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s13197-020-04953-x).

2.
J Food Sci ; 83(8): 2167-2175, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30028509

ABSTRACT

The objective of this work was to model the mass transfer in corn tortilla baking using different approaches for effective diffusivity based on the Fick's law of diffusion and to evaluate the impact of the process on quality parameters. The 1st one assumes constant effective diffusivity (method of slopes by subperiods and method of successive approximations) and the 2nd one considers variable effective diffusivity (quadratic function of time and Weibull distribution). In addition, the Weibull distribution was applied to fracturability. The effective moisture diffusivity inside the tortilla during baking is not constant and the estimations generated when considering variable diffusivity with quadratic time and Weibull distribution showed better fits (both, R2 = 0.999) to the average moisture content. Quality parameter fracturability was affected by the baking process and the Weibull model adequately described (R2 = 0.996) the fracturability behavior. This work will allow an adequate estimation of the concentration profiles and histories for mass transfer operations in products that can be represented as an infinite plate. The obtained analytical solutions with variable diffusivity will help to estimate the optimal conditions of the baking process to achieve the required final moisture content for baked corn tortilla shells. PRACTICAL APPLICATION: The analytical solutions of the Fick's law of diffusion for the moisture content in products that can be represented as an infinite plate, considering variable diffusivity, can be useful in studies when accurate estimations of effective diffusivity and concentration are needed.


Subject(s)
Bread/analysis , Hot Temperature , Water/analysis , Zea mays , Diffusion
3.
World J Microbiol Biotechnol ; 32(11): 182, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27646209

ABSTRACT

This study determined the specific uptake rate of glucose and corn oil substrates used as carbon sources in batch cultures of Gibberella fujikuroi. We tested three biological models of growth rate: Monod, logistic and lag-exponential. With respect to the substrate consumption rate, we tested two models: constant cell yield (CCY) and law of mass action (LMA). The experimental data obtained from the culture with glucose as substrate correlated satisfactorily with the logistic/LMA model, indicating that the cell yield was variable. In the case of corn oil as carbon source, considering total residual lipids as substrate in the culture broth, the model with the best correlation was the lag-exp/CCY model. The quantification by GC of the three main fatty acids (linoleic, oleic and palmitic) in the culture medium showed a cumulative behavior, with a maximum concentration of each acid at 36 h. We established a more explicit mechanism of the consumption of corn oil, consisting of two stages: generation of fatty acids by hydrolysis and consumption by cellular uptake. The kinetic of hydrolysable lipids was of first order. We found that the hydrolysis rate of corn oil is not a limiting factor for the uptake of fatty acids by the microorganism. We also established, based on the analysis of the identical mathematical structure of consumption kinetics, that the uptake of fatty acids is faster than the uptake of glucose.


Subject(s)
Batch Cell Culture Techniques/methods , Corn Oil/metabolism , Gibberella/growth & development , Glucose/metabolism , Biomass , Carbon/metabolism , Culture Media , Kinetics , Lipids/chemistry , Logistic Models
4.
Biotechnol Prog ; 29(5): 1169-80, 2013.
Article in English | MEDLINE | ID: mdl-23825106

ABSTRACT

A nonstructured model was used to study the dynamics of gibberellic acid production in a stirred tank bioreactor. Experimental data were obtained from submerged batch cultures of Gibberella fujikuroi (CDBB H-984) grown in varying ratios of glucose-corn oil as the carbon source. The nitrogen depletion effect was included in mathematical model by considering the specific kinetic constants as a linear function of the normalized nitrogen consumption rate. The kinetics of biomass growth and consumption of phosphate and nitrogen were based on the logistic model. The traditional first-order kinetic model was used to describe the specific consumption of glucose and corn oil. The nitrogen effect was solely included in the phosphate and corn oil consumption and biomass growth. The model fit was satisfactory, revealing the dependence of the kinetics with respect to the nitrogen assimilation rate. Through simulations, it was possible to make diagrams of specific growth rate and specific rate of substrate consumptions, which was a powerful tool for understanding the metabolic interactions that occurred during the various stages of fermentation process. This kinetic analysis provided the proposal of a possible mechanism of regulation on growth, substrate consumptions, and production of gibberellic acid (GA3 ) in G. fujikuroi.


Subject(s)
Bioreactors , Carbon/chemistry , Corn Oil/chemistry , Gibberella/metabolism , Glucose/chemistry , Biochemical Phenomena , Biomass , Culture Media/chemistry , Fermentation , Gibberellins/biosynthesis , Nitrogen/metabolism , Phosphates/metabolism
5.
World J Microbiol Biotechnol ; 27(6): 1499-505, 2011 Jun.
Article in English | MEDLINE | ID: mdl-25187149

ABSTRACT

Gibberellic acid has been known since 1954 but its effect on rice still remains very important in the agricultural world. Gibberellic acid (GA3) is the main secondary metabolite produced by the Gibberella fujikuroi fungus. This hormone is of great importance in agriculture and the brewing industry, due to its fast and strong effects at low concentrations (µg) on the processes of growth stimulation, flowering, stem elongation, and germination of seeds, among others. Plant promoters of growth production such as the gibberellins, especially the GA3 are a priority in obtaining better harvests in the agricultural area and by extension, improving the food industry. Three routes to obtaining GA3 have been reported: extraction from plants, chemical synthesis and microbial fermentation. The latter being the most common method used to produce GA3. In this investigation, glucose-corn oil mixture was used as a carbon source on the basis of 40 g of carbon in a 7 L stirred tank bioreactor. A pH of 3.5, 29°C, 600 min(-1) agitation and 1 vvm aeration were maintained and controlled with a biocontroller connected to the bioreactor, throughout the entire culture time. The carbon source mixture affected the fermentation time as well as the production of the GAs. The production of 380 mg GA3L(-1) after 288 h of fermentation was obtained when the glucose-corn oil mixture was employed contrasting the 136 mg GA3L(-1) at 264 h of culture when only glucose was used.

SELECTION OF CITATIONS
SEARCH DETAIL
...