Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Toxics ; 12(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38535922

ABSTRACT

Xenobiotics never appear as single, isolated substances in the environment but instead as multi-component mixtures. However, our understanding of the ecotoxicology of mixtures is far from sufficient. In this study, three active pharmaceutical ingredients (carbamazepine, diclofenac, and ibuprofen) and three pesticides (S-metolachlor, terbuthylazine, and tebuconazole) from the most frequently detected emerging micropollutants were examined for their acute cytotoxicity, both individually and in combination, by bioluminescence inhibition in Aliivibrio fischeri (NRRL B-11177). Synergy, additive effects, and antagonism on cytotoxicity were determined using the combination index (CI) method. Additionally, PERMANOVA was performed to reveal the roles of these chemicals in binary, ternary, quaternary, quinary, and senary mixtures influencing the joint effects. Statistical analysis revealed a synergistic effect of diclofenac and carbamazepine, both individually and in combination within the mixtures. Diclofenac also exhibited synergy with S-metolachlor and when mixed with ibuprofen and S-metolachlor. S-metolachlor, whether alone or paired with ibuprofen or diclofenac, increased the toxicity at lower effective concentrations in the mixtures. Non-toxic terbuthylazine showed great toxicity-enhancing ability, especially at low concentrations. Several combinations displayed synergistic effects at environmentally relevant concentrations. The application of PERMANOVA was proven to be unique and successful in determining the roles of compounds in synergistic, additive, and antagonistic effects in mixtures at different effective concentrations.

2.
Neurobiol Dis ; 18(3): 499-508, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15755677

ABSTRACT

Short fragments and fragment analogues of beta-amyloid 1-42 peptide (Abeta1-42) display a protective effect against Abeta-mediated neurotoxicity. After consideration of our earlier results with in vitro bioassay of synthetic Abeta-recognition peptides and toxic fibrillar amyloids, five pentapeptides were selected as putative neuroprotective agents: Phe-Arg-His-Asp-Ser amide (Abeta4-8) and Gly-Arg-His-Asp-Ser amide (an analogue of Abeta4-8), Leu-Pro-Tyr-Phe-Asp amide (an analogue of Abeta17-21), Arg-Ile-Ile-Gly-Leu amide (an analogue of Abeta30-34), and Arg-Val-Val-Ile-Ala amide (an analogue of Abeta38-42). In vitro electrophysiological experiments on rat brain slices demonstrated that four of these peptides counteracted with the field excitatory postsynaptic potential-attenuating effect of Abeta1-42; only Arg-Val-Val-Ile-Ala amide proved inactive. In in vivo experiments using extracellular single-unit recordings combined with iontophoresis, all these pentapeptides except Arg-Val-Val-Ile-Ala amide protected neurons from the NMDA response-enhancing effect of Abeta1-42 in the hippocampal CA1 region. These results suggest that Abeta recognition sequences may serve as leads for the design of novel neuroprotective compounds.


Subject(s)
Amyloid beta-Peptides/physiology , Amyloid/physiology , Neurons/physiology , Neuroprotective Agents/pharmacology , Oligopeptides/physiology , Peptide Fragments/physiology , Action Potentials/drug effects , Action Potentials/physiology , Amyloid beta-Peptides/ultrastructure , Animals , Electrophysiology , Male , N-Methylaspartate/pharmacology , Neurons/drug effects , Neurons/ultrastructure , Neuroprotective Agents/isolation & purification , Neuroprotective Agents/metabolism , Oligopeptides/isolation & purification , Peptide Fragments/ultrastructure , Rats , Rats, Wistar
3.
Neuropharmacology ; 47(6): 916-25, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15527825

ABSTRACT

The kynurenine pathway converts tryptophan into various compounds, including l-kynurenine, which in turn can be converted to the excitatory amino acid receptor antagonist kynurenic acid, which may therefore serve as a protective agent in such neurological disorders as epileptic seizures. Kynurenic acid, however, has a very limited ability to cross the blood-brain barrier, whereas kynurenine passes the barrier easily. In this study, we tested the hypothesis that kynurenine administered systemically together with probenecid, which inhibits kynurenic acid excretion from the cerebrospinal fluid, results in an increased level of kynurenic acid in the brain that is sufficiently high to provide protection against the development of pentylentetrazol-induced epileptic seizures. CA3 stimulation-evoked population spike activity was recorded from the pyramidal layer of area CA1 of the rat hippocampus, and in another series of behavioural experiments, water maze and open-field studies were carried out to test the presumed protective effect of kynurenine + probenecid pre-treatment against pentylenetetrazol-induced seizures. This study has furnished the first electrophysiological proof that systemic kynurenine (300 mg/kg, i.p.) and probenecid (200 mg/kg, i.p.) administration protects against pentylenetetrazol-induced (60 mg/kg, i.p.) epileptic seizures.


Subject(s)
Anticonvulsants , Behavior, Animal/drug effects , Kynurenine/pharmacology , Pentylenetetrazole/antagonists & inhibitors , Probenecid/pharmacology , Seizures/chemically induced , Seizures/prevention & control , Animals , Drug Synergism , Electrophysiology , Hippocampus/drug effects , Hippocampus/pathology , Male , Maze Learning/drug effects , Pyramidal Cells/drug effects , Rats , Rats, Wistar , Seizures/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...