Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38612129

ABSTRACT

The aim of the current study was to determine the load capacity of composite columns subjected to axial compressive load. The subjects of the study were two types of columns with a rectangular cross-section, with different edge lengths. The tested columns had a closed cross-section. Four different fiber arrangements were analyzed for both cross-sections studied. The research was realized using interdisciplinary methods to determine the mechanism of damage to the composite material, with particular emphasis on damage initiation and propagation. Experimental tests were realized on a testing machine, the analysis was carried out with an acoustic emission system, and image analysis using visual assessment system of deflections of the walls of the structure. In addition, a number of numerical analyses were realized based on advanced modeling techniques for fiber-reinforced composites. A comparative analysis of both quantitative and qualitative results is presented for both analyses. The innovation of the presented research lies in the development of a custom method for modeling structures made of composite material with special emphasis on the failure phase. This will allow to accurately reflect the modeling of thin-walled structures with closed cross-section subjected to loading in a complex stress state.

2.
Materials (Basel) ; 17(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612055

ABSTRACT

This paper presents an analysis of the effect of the geometry of the end-coil transition zone on the material stress state of a machined compression spring with a rectangular wire cross-section. The literature relationships for determining the stresses in rectangular wire compression springs neglect the effects associated with the geometry of this zone. A series of non-linear numerical analyses were carried out for models of machined compression springs with a wide range of variation in geometrical parameters. The results of these analyses were used to develop a computational model to estimate the minimum value of the rounding radius ρmin, which ensures that the stresses in this zone are reduced to the level of the maximum coil stresses. The model is simple to apply, and allows the radius ρmin to be estimated for springs with a spring index between 2.5 and 10, a helix angle between 1° and 15°, and a proportion of the sides of the wire section between 0.4 and 5.

3.
Materials (Basel) ; 16(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37959432

ABSTRACT

The purpose of this research was the analysis of the stability of compressed thin-walled composite columns with closed rectangular cross-sections, subjected to axial load. The test specimens (made of carbon-epoxy composite) were characterized by different lay-ups of the composite material. Experimental tests were carried out using a universal testing machine and other interdisciplinary testing techniques, such as an optical strain measurement system. Simultaneously with the experimental studies, numerical simulations were carried out using the finite element method. In the case of FEA simulations, original numerical models were derived. In the case of both experimental research and FEM simulations, an in-depth investigation of buckling states was carried out. The measurable effect of the research was to determine both the influence of the cross-sectional shape and the lay-up of the composite layers on the stability of the structure. The novelty of the present paper is the use of interdisciplinary research techniques in order to determine the critical state of compressed thin-walled composite structures with closed sections. An additional novelty is the object of study itself-that is, thin-walled composite columns with closed sections.

4.
Materials (Basel) ; 16(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37049201

ABSTRACT

In order to design an optimal reinforcement of steel thin-walled beams with composite materials, it is worth analyzing two important, although often overlooked issues, which are the selection of the appropriate thickness of the adhesive layer and the effective anchoring length of the composite tape. This paper, which is part of a wider laboratory study devoted to the strengthening of thin-walled steel profiles, focuses on the second issue. The paper involves a description of laboratory four-point bending tests during which ten thin-walled steel beams made of a rectangular section with dimensions of 120 × 60 × 3 and a length of 3 m were tested. Two beams were taken as reference beams, and the other eight were reinforced using Sika CarboDur S512 carbon fiber composite tape, assuming four different effective anchorage lengths. The impact of the length of the anchoring of the composite tape on the value of the displacements and strains of the tested beams and on the value of the destructive load that caused tape detachment was analyzed. The following phase was numerical analyses carried out in the Abaqus program, which showed high consistency with the results of laboratory tests. In reference to the conducted tests, it was observed that the increase in the anchoring length of the composite tape has a slight impact on the change in the value of strains and displacements in the tested beams. Nevertheless, the increase in the effective anchorage length has a significant impact on the load value at which the composite tapes are detached from the surface of the steel thin-walled beam.

5.
Materials (Basel) ; 15(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36499861

ABSTRACT

When reinforcing thin-walled steel members with composite tapes, two issues often overlooked in published scientific papers should be considered, namely the correct thickness of the adhesive layer and the optimum bond length of the CFRP tape. In this article, the authors focused on the first of these issues. For this purpose, eight beams with a thin-walled box cross-section and a length of 3 m were subjected to bending in a four-point scheme. Six beams were reinforced with Sika CarboDur S512 composite tape, and two beams without reinforcement were tested as reference members. Three thicknesses of the adhesive layer (SikaDur-30) were analyzed: 0.6 mm, 1.3 mm and 1.75 mm. In addition to examining the effect of the thickness of the adhesive layer on displacements and deformations of thin-walled steel members, the load value at which the composite tape peeled off was also analyzed. Numerical analyses were then carried out in Abaqus, the outcomes of which showed good agreement with the laboratory results. Both numerical and laboratory results have shown that the thickness of the adhesive layer had a minor effect on the reduction in deformation and displacement of the tested beams. At the same time, with the increase in the thickness of the adhesive layer, the value of the load at which the CFRP tapes detached from the beam surface significantly decreased.

6.
Materials (Basel) ; 15(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35161193

ABSTRACT

This paper presents selected issues related to the reinforcement of steel element cold-formed with CFRP tapes. The first section of the paper is a review of source literature and a presentation of the basic information on cold-formed thin-walled steel elements and CFRP composite materials, stressing the advantages and disadvantages of using them to reinforce steel structures. Next, the authors present original research on reinforcing bent thin-walled sigma-type steel beams using adhesive CFRP tapes. Reference beams with a cross-section of Σ200 × 70 × 2 and a length of 3 m, reinforced with CFRP tape, were tested in the four-point bending scheme. Then, the paper discusses a developed numerical model that is consistent with the subject matter of the laboratory tests. The developed numerical model was prepared to represent the failure of the connection between the beam and the composite tape. This was followed by a number of numerical analyses in order to determine the optimum adhesive layer that would allow us to achieve the maximum reduction of the displacements and strains in bent thin-walled sigma-type beams. Three thicknesses of the SikaDur adhesive layer were analyzed in the study. Based on the analyzes, it was found that the increase in the thickness of the adhesive layer slightly reduced the strain and displacement in the beams, but caused a significant decrease in the load value, at which damage appeared in the glued joint.

7.
Materials (Basel) ; 14(9)2021 May 04.
Article in English | MEDLINE | ID: mdl-34064357

ABSTRACT

The paper presents a comparison of the effectiveness of strengthening steel thin-walled, cold-formed sigma beams with CFRP tapes and steel tapes. For this purpose, three beams without reinforcement (reference beams) of the "Blachy Pruszynski" type, with a cross-section of ∑200 × 70 × 2 and a span of 280 cm, made of S350GD steel grade, were subjected to laboratory tests in the four-point bending scheme. In the next stage the tests included nine ∑200 × 70 × 2 beams reinforced with Sika CarboDur S512 CFRP tape and six ∑200 × 70 × 2 beams reinforced with steel tape made of S235 steel grade. The length of the reinforcement tapes as well made of steel as well of CFRP was of 175 cm. The location of the tapes within the height of the beams' cross-section was assumed in three variants, namely placing the tape on the upper or bottom flange and on the web. In the case of beams reinforced with CFRP, three beams were tested for each reinforcement location, and in the case of beams reinforced with steel tapes, two beams were tested for each reinforcement location. SikaDur®-30 glue with a thickness of 1.3 mm was used in order to connect steel or CFRP tapes to the beams. The dimensions of the tapes cross-sections in both cases were similar (CFRP tapes: 50 × 1.2 mm, steel tapes: 50 × 1.3 mm). For all types of beams, numerical models were also developed in the Abaqus software. The main aim of this paper was investigation of the influence of mechanical properties of steel or CFRP tapes on the effectiveness of strengthening ∑ beams. For this purpose a comparison of these two solutions with respect to the limitation of displacements and deformations of the beam was performed. The obtained results were considered in the context of the mechanical properties of the materials composing the reinforcement tapes. The tests showed slight differences in the results of strain and displacements obtained for reinforcement made of two different materials. It was also noted that the decisive element was the failure of the joint at the steel-glue interface. Therefore, future studies will pay particular attention to the adhesive layer.

8.
Materials (Basel) ; 14(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808556

ABSTRACT

The paper analyzes the stability and failure phenomenon of compressed thin-walled composite columns. Thin-walled columns (top-hat and channel section columns) were made of carbon fiber reinforced polymer (CFRP) composite material (using the autoclave technique). An experimental study on actual structures and numerical calculations on computational models using the finite element method was performed. During the experimental study, post-critical equilibrium paths were registered with acoustic emission signals, in order to register the damage phenomenon. Simultaneously to the experimental tests, numerical simulations were performed using progressive failure analysis (PFA) and cohesive zone model (CZM). A measurable effect of the conducted experimental-numerical research was the analysis of the failure phenomenon, both for the top-hat and channel section columns (including delamination phenomenon). The main objective of this study was to be able to evaluate the delamination phenomenon, with further analysis of this phenomenon. The results of the numerical tests showed a compatibility with experimental tests.

9.
Materials (Basel) ; 15(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35009313

ABSTRACT

The novelty of this paper, in relation to other thematically similar research papers, is the comparison of the failure phenomenon on two composite profiles with different cross-sections, using known experimental techniques and advanced numerical models of composite material failure. This paper presents an analysis of the failure of thin-walled structures made of composite materials with top-hat and channel cross-sections. Both experimental investigations and numerical simulations using the finite element method (FEM) are applied in this paper. Tests were conducted on thin-walled short columns manufactured of carbon fiber reinforced polymer (CFRP) material. The experimental specimens were made using the autoclave technique and thus showed very good strength properties, low porosity and high surface smoothness. Tests were carried out in axial compression of composite profiles over the full range of loading-up to total failure. During the experimental study, the post-buckling equilibrium paths were registered, with the simultaneous use of a Zwick Z100 universal testing machine (UTM) and equipment for measuring acoustic emission signals. Numerical simulations used composite material damage models such as progressive failure analysis (PFA) and cohesive zone model (CZM). The analysis of the behavior of thin-walled structures subjected to axial compression allowed the evaluation of stability with an in-depth assessment of the failure of the composite material. A significant effect of the research was, among others, determination of the phenomenon of damage initiation, delamination and loss of load-carrying capacity. The obtained results show the high qualitative and quantitative agreement of the failure phenomenon. The dominant form of failure occurred at the end sections of the composite columns. The delamination phenomenon was observed mainly on the outer flanges of the structure.

10.
Materials (Basel) ; 13(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158187

ABSTRACT

The presented research is a part of a broader study of strengthening methods closely associated with cold-formed sigma steel beams with tapes made of Carbon Fiber Reinforcement Polymer/Plastic (CFRP). The presented results are a continuation and extension of the tests described in previous work by the authors and refer to high-slenderness thin-walled steel sigma beams subjected to a significant large rotation. The main idea of this expanded study was to identify the effectiveness of CFRP tapes with respect to different locations, namely at a bottom-tensioned or upper-compressed flange. Six beams with a cross-section of an Σ140 × 70 × 2.5 profile by "Blachy Pruszynski" and made of S350GD steel with a span of L = 270 cm were tested in the four-point bending scheme. Two beams, taken as reference, were tested without reinforcement. The remaining beams were reinforced with the use of a 50-mm wide and 1.2-mm thick Sika CarboDur S512 CFRP tape, with two beams reinforced by placing the tape on the upper flange and two with tape located on the bottom flange. The CFRP tape was bonded directly to the beams (by SikaDur®-30 adhesive). Laboratory tests were aimed at determining the impact of the use of composite tapes on the limitation of displacements and deformations of thin-walled structures. In order to perform a precise measurement of displacement, which is, in the case of beams subjected to large rotations, a very difficult issue in itself, the Tritop system and two coupled lenses of the Aramis system were used. Electrofusion strain gauges were used to measure the deformation. In the next step, numerical models of the analyzed beams were developed in the Abaqus program. Good compliance of the results of laboratory tests and numerical analyses was achieved. The obtained results confirm the beneficial effect of the use of tapes (CFRP) on the reduction in displacements and deformations of steel cold-formed elements.

11.
Materials (Basel) ; 13(19)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003594

ABSTRACT

In this paper, the retrofitting method of thin-walled, cold-formed sigma beams using bonded carbon fibre reinforced polymer (CFRP) tapes is proposed. The effectiveness of the presented strengthening method is investigated by the means of laboratory tests and numerical analysis conducted on simply supported, single-span beams made of 200 × 70 × 2 profile by "Blachy Pruszynski" subjected to a four-point bending scheme. Special attention is paid to the evaluation of possibility to increase the load capacity with simultaneous limitation of beams displacements by appropriate location of CFRP tapes. For this purpose, three beams were reinforced with CFRP tape placed on the inner surface of the upper flange, three with CFRP tape on the inner surface of the web, three beams with reinforcement located on the inner surface of the bottom flange, and two beams were tested as reference beams without reinforcement. CFRP tape with a width of 50 mm and a thickness of 1.2 mm was used as the reinforcement and was bonded to the beams by SikaDur®-30 adhesive. Precise strain measurement was made using electrofusion strain gauges, and displacement measurement was performed using two Aramis coupled devices in combination with the Tritop machine. Numerical models of the considered beams were developed in the Finite Element Method (FEM) program Abaqus®. Experimental and numerical analysis made it possible to obtain a very high agreement of results. Based on the conducted research, it was proved how important is the impact of the applied reinforcement (CFRP tapes) in thin-walled steel structures, with respect to the classic methods of strengthening steel building structures.

12.
Materials (Basel) ; 13(19)2020 Sep 26.
Article in English | MEDLINE | ID: mdl-32993139

ABSTRACT

The paper presents the results of numerical tests of impact and energy absorption capacity of thin-walled columns, subjected to axial impact loading, made of aluminum alloy, and having a square cross-section and spherical indentations on their lateral surfaces. The numerical models were validated using an experiment that was conducted on the Instron CEAST 9350 High Energy System drop hammer. Material properties of the applied aluminum alloy were determined on the basis of a static tension test. The crushing behavior of the columns and some crashworthiness indicators were investigated. On the basis of the results of the conducted analyses, conclusions were drawn about the most beneficial design/constructional variants in terms of achieved crashworthiness parameters.

13.
Materials (Basel) ; 13(13)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630628

ABSTRACT

This study investigates the effect of eccentric compressive load on the stability, critical states and load-carrying capacity of thin-walled composite Z-profiles. Short thin-walled columns made of carbon fiber-reinforced plastic composite material fabricated by the autoclave technique are examined. In experimental tests, the thin-walled structures were compressed until a loss of their load-carrying capacity was obtained. The test parameters were measured to describe the structure's behavior, including the phenomenon of composite material failure. The post-critical load-displacement equilibrium paths and the acoustic emission signal enabling analysis of the composite material condition during the loading process were measured. The scope of the study also included performing numerical simulations by finite element method to solve the problem of non-linear stability and to describe the phenomenon of composite material damage based on the progressive failure model. The obtained numerical results showed a good agreement with the experimental characteristics of real structures. The numerical results are compared with the experimental findings to validate the developed numerical model.

14.
Materials (Basel) ; 13(5)2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32143395

ABSTRACT

The subject of the presented research was a thin-walled composite column made of CFRP (carbon-epoxy laminate). The test sample had a top-hat cross-section with a symmetrical arrangement of laminate layers [90/-45/45/0]s. The composite structure was subjected to the process of axial compression. Experimental and numerical tests for the loss of stability and load-carrying capacity of the composite construction were carried out. The numerical buckling analysis was carried out based on the minimum potential energy criterion (based on the solution of an eigenvalue problem). The study of loss of load-carrying capacity was performed on the basis of a progressive failure analysis, solving the problem of non-linear stability based on Newton-Raphson's incremental iterative method. Numerical results of critical and post-critical state were confronted with experimental research in order to estimate the vulnerable areas of the structure, showing areas prone to damage of the material.

SELECTION OF CITATIONS
SEARCH DETAIL
...