Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 31(14): 3115-3124.e5, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34089645

ABSTRACT

The motor control resolution of any animal behavior is limited to the minimal force step available when activating muscles, which is set by the number and size distribution of motor units (MUs) and muscle-specific force. Birdsong is an excellent model system for understanding acquisition and maintenance of complex fine motor skills, but we know surprisingly little about how the motor pool controlling the syrinx is organized and how MU recruitment drives changes in vocal output. Here we developed an experimental paradigm to measure MU size distribution using spatiotemporal imaging of intracellular calcium concentration in cross-sections of living intact syrinx muscles. We combined these measurements with muscle stress and an in vitro syrinx preparation to determine the control resolution of fundamental frequency (fo), a key vocal parameter, in zebra finches. We show that syringeal muscles have extremely small MUs, with 40%-50% innervating ≤3 and 13%-17% innervating a single muscle fiber. Combined with the lowest specific stress (5 mN/mm2) known to skeletal vertebrate muscle, small force steps by the major fo controlling muscle provide control of 50-mHz to 7.3-Hz steps per MU. We show that the song system has the highest motor control resolution possible in the vertebrate nervous system and suggest this evolved due to strong selection on fine gradation of vocal output. Furthermore, we propose that high-resolution motor control was a key feature contributing to the radiation of songbirds that allowed diversification of song and speciation by vocal space expansion.


Subject(s)
Laryngeal Muscles/innervation , Nervous System Physiological Phenomena , Songbirds , Vocalization, Animal/physiology , Animals
2.
JASA Express Lett ; 1(3): 031201, 2021 Mar.
Article in English | MEDLINE | ID: mdl-36154560

ABSTRACT

Male harbor seals (Phoca vitulina) produce stereotypic underwater roars during the mating season. It remains unclear to what extent roar structures vary due to predation levels. Here, seal roars from waters with many (Iceland) and few (Denmark and Sweden) predators were compared. Most Icelandic roars included a long pulse train and a pause. Icelandic roars occurred less frequently, lasted longer (20.3 ± 6.5 s), and were recorded with lower received sound levels (98.3 ± 8.9 dB re 1 µPa root mean square) than roars from Denmark and Sweden. Local extrinsic factors may shape sound production in harbor seals more than previously reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...