Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Front Mol Neurosci ; 17: 1386735, 2024.
Article in English | MEDLINE | ID: mdl-38883980

ABSTRACT

Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.

2.
Brain Behav Immun ; 117: 399-411, 2024 03.
Article in English | MEDLINE | ID: mdl-38309639

ABSTRACT

BACKGROUND: Autoantibodies against the potassium voltage-gated channel subfamily A member 2 (KCNA2) have been described in a few cases of neuropsychiatric disorders, but their diagnostic and pathophysiological role is currently unknown, imposing challenges to medical practice. DESIGN / METHODS: We retrospectively collected comprehensive clinical and paraclinical data of 35 patients with KCNA2 IgG autoantibodies detected in cell-based and tissue-based assays. Patients' sera and cerebrospinal fluid (CSF) were used for characterization of the antigen, clinical-serological correlations, and determination of IgG subclasses. RESULTS: KCNA2 autoantibody-positive patients (n = 35, median age at disease onset of 65 years, range of 16-83 years, 74 % male) mostly presented with cognitive impairment and/or epileptic seizures but also ataxia, gait disorder and personality changes. Serum autoantibodies belonged to IgG3 and IgG1 subclasses and titers ranged from 1:32 to 1:10,000. KCNA2 IgG was found in the CSF of 8/21 (38 %) patients and in the serum of 4/96 (4.2 %) healthy blood donors. KCNA2 autoantibodies bound to characteristic anatomical areas in the cerebellum and hippocampus of mammalian brain and juxtaparanodal regions of peripheral nerves but reacted exclusively with intracellular epitopes. A subset of four KCNA2 autoantibody-positive patients responded markedly to immunotherapy alongside with conversion to seronegativity, in particular those presenting an autoimmune encephalitis phenotype and receiving early immunotherapy. An available brain biopsy showed strong immune cell invasion. KCNA2 autoantibodies occurred in less than 10 % in association with an underlying tumor. CONCLUSION: Our data suggest that KCNA2 autoimmunity is clinically heterogeneous. Future studies should determine whether KCNA2 autoantibodies are directly pathogenic or develop secondarily. Early immunotherapy should be considered, in particular if autoantibodies occur in CSF or if clinical or diagnostic findings suggest ongoing inflammation. Suspicious clinical phenotypes include autoimmune encephalitis, atypical dementia, new-onset epilepsy and unexplained epileptic seizures.


Subject(s)
Autoimmune Diseases of the Nervous System , Autoimmunity , Encephalitis , Hashimoto Disease , Animals , Humans , Male , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Female , Retrospective Studies , Autoantibodies , Seizures , Mammals , Kv1.2 Potassium Channel
3.
J Neurol ; 271(5): 2736-2744, 2024 May.
Article in English | MEDLINE | ID: mdl-38386048

ABSTRACT

Autoantibodies against contactin-associated protein 2 (Caspr2) not only induce limbic autoimmune encephalitis but are also associated with pain conditions. Here, we analyzed clinical data on pain in a large cohort of patients included into the German Network for Research in Autoimmune Encephalitis. Out of 102 patients in our cohort, pain was a frequent symptom (36% of all patients), often severe (63.6% of the patients with pain) and/or even the major symptom (55.6% of the patients with pain). Pain phenotypes differed between patients. Cluster analysis revealed two major phenotypes including mostly distal-symmetric burning pain and widespread pain with myalgia and cramps. Almost all patients had IgG4 autoantibodies and some additional IgG1, 2, and/or 3 autoantibodies, but IgG subclasses, titers, and presence or absence of intrathecal synthesis were not associated with the occurrence of pain. However, certain pre-existing risk factors for chronic pain like diabetes mellitus, peripheral neuropathy, or preexisting chronic back pain tended to occur more frequently in patients with anti-Caspr2 autoantibodies and pain. Our data show that pain is a relevant symptom in patients with anti-Caspr2 autoantibodies and support the idea of decreased algesic thresholds leading to pain. Testing for anti-Caspr2 autoantibodies needs to be considered in patients with various pain phenotypes.


Subject(s)
Autoantibodies , Membrane Proteins , Nerve Tissue Proteins , Phenotype , Aged , Female , Humans , Male , Middle Aged , Autoantibodies/blood , Autoantibodies/immunology , Cohort Studies , Immunoglobulin G/blood , Immunoglobulin G/immunology , Membrane Proteins/immunology , Nerve Tissue Proteins/immunology , Pain/immunology , Pain/etiology , Pain/blood
4.
Article in English | MEDLINE | ID: mdl-37914416

ABSTRACT

OBJECTIVES: Neurodegeneration is considered a relevant pathophysiologic feature in neurologic disorders associated with antibodies against glutamic acid decarboxylase 65 (GAD65). In this study, we investigate surrogates of neuroaxonal damage in relation to disease duration and clinical presentation. METHODS: In a multicentric cohort of 50 patients, we measured serum neurofilament light chain (sNfL) in relation to disease duration and disease phenotypes, applied automated MRI volumetry, and analyzed clinical characteristics. RESULTS: In patients with neurologic disorders associated with GAD65 antibodies, we detected elevated sNfL levels early in the disease course. By contrast, this elevation of sNfL levels was less pronounced in patients with long-standing disease. Increased sNfL levels were observed in patients presenting with cerebellar ataxia and limbic encephalitis, but not in those with stiff person syndrome. Using MRI volumetry, we identified atrophy predominantly of the cerebellar cortex, cerebellar superior posterior lobe, and cerebral cortex with similar atrophy patterns throughout all clinical phenotypes. DISCUSSION: Together, our data provide evidence for early neuroaxonal damage and support the need for timely therapeutic interventions in GAD65 antibody-associated neurologic disorders.


Subject(s)
Cerebellar Ataxia , Nervous System Diseases , Stiff-Person Syndrome , Humans , Atrophy , Autoantibodies
5.
Fortschr Neurol Psychiatr ; 90(11): 529-542, 2022 Nov.
Article in German | MEDLINE | ID: mdl-36343617

ABSTRACT

Autoimmune encephalitides form a heterogeneous group of neurological and psychiatric diseases. In antibody-mediated encephalitis, autoantibodies are pathogenic and directly cause the encephalitis. In antibody-associated encephalitis, which is paraneoplastic most of the time, autoantibodies serve as diagnostic biomarkers and are able to predict the underlying tumour.


Subject(s)
Encephalitis , Hashimoto Disease , Humans , Hashimoto Disease/diagnosis , Hashimoto Disease/therapy , Encephalitis/diagnosis , Encephalitis/therapy , Autoantibodies
6.
Article in English | MEDLINE | ID: mdl-34599001

ABSTRACT

BACKGROUND AND OBJECTIVES: To determine the real-world use of rituximab in autoimmune encephalitis (AE) and to correlate rituximab treatment with the long-term outcome. METHODS: Patients with NMDA receptor (NMDAR)-AE, leucine-rich glioma-inactivated-1 (LGI1)- AE, contactin-associated protein-like-2 (CASPR2)-AE, or glutamic acid decarboxylase 65 (GAD65) disease from the GErman Network for Research on AuToimmune Encephalitis who had received at least 1 rituximab dose and a control cohort of non-rituximab-treated patients were analyzed retrospectively. RESULTS: Of the 358 patients, 163 (46%) received rituximab (NMDAR-AE: 57%, CASPR2-AE: 44%, LGI1-AE: 43%, and GAD65 disease: 37%). Rituximab treatment was initiated significantly earlier in NMDAR- and LGI1-AE (median: 54 and 155 days from disease onset) compared with CASPR2-AE or GAD65 disease (median: 632 and 1,209 days). Modified Rankin Scale (mRS) scores improved significantly in patients with NMDAR-AE, both with and without rituximab treatment. Although being more severely affected at baseline, rituximab-treated patients with NMDAR-AE more frequently reached independent living (mRS score ≤2) (94% vs 88%). In LGI1-AE, rituximab-treated and nontreated patients improved, whereas in CASPR2-AE, only rituximab-treated patients improved significantly. No improvement was observed in patients with GAD65 disease. A significant reduction of the relapse rate was observed in rituximab-treated patients (5% vs 13%). Detection of NMDAR antibodies was significantly associated with mRS score improvement. A favorable outcome was also observed with early treatment initiation. DISCUSSION: We provide real-world data on immunosuppressive treatments with a focus on rituximab treatment for patients with AE in Germany. We suggest that early and short-term rituximab therapy might be an effective and safe treatment option in most patients with NMDAR-, LGI1-, and CASPR2-AE. CLASS OF EVIDENCE: This study provides Class IV evidence that rituximab is an effective treatment for some types of AE.


Subject(s)
Autoimmune Diseases of the Nervous System/immunology , Encephalitis/drug therapy , Encephalitis/immunology , Immunosuppressive Agents/pharmacology , Outcome Assessment, Health Care , Registries , Rituximab/pharmacology , Adult , Aged , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/drug therapy , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/immunology , Autoantibodies/immunology , Autoimmune Diseases of the Nervous System/drug therapy , Female , Follow-Up Studies , Humans , Immunosuppressive Agents/administration & dosage , Male , Middle Aged , Rituximab/administration & dosage
7.
Neurol Res Pract ; 2: 1, 2020.
Article in English | MEDLINE | ID: mdl-33324907

ABSTRACT

BACKGROUND: Antibody-mediated and paraneoplastic autoimmune encephalitides (AE) present with a broad spectrum of clinical symptoms. They often lead to progressing inflammatory changes of the central nervous system with subacute onset and can cause persistent brain damage. Thus, to promptly start the appropriate and AE-specific therapy, recognition of symptoms, initiation of relevant antibody diagnostics and confirmation of the clinical diagnosis are crucial, in particular as the diseases are relatively rare. AIM: This standard operating procedure (SOP) should draw attention to the clinical presentation of AE, support the diagnostic approach to patients with suspected AE and guide through the necessary steps including therapeutic decisions, tumour screening and exclusion of differential diagnoses. METHOD: Based on existing diagnostic algorithms, treatment recommendations and personal experiences, this SOP gives an overview of clinical presentation, diagnostic procedures and therapy in AE. Additional information is provided within an accompanying text and a table describing the most important autoantibodies and their characteristics. RESULTS: The initial steps of the AE flow chart are based on clinical symptoms and the patient's history. Assignment to paraneoplastic or antibody-mediated AE is sometimes clinically possible. Diagnostics should include MRI, EEG and CSF analysis with antibody panel diagnostic. Definite AE can be diagnosed if the underlying antibody is compatible with the clinical presentation. Classification of probable AE may be possible even with negative anti-neuronal autoantibodies if the clinical presentation and laboratory abnormalities are highly suggestive of AE. The confirmed AE diagnosis requires immediate initiation of immunotherapy. CONCLUSION: The SOP facilitates the recognition of patients with AE and presents the necessary diagnostic and therapeutic steps.

8.
J Clin Med ; 9(9)2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32824982

ABSTRACT

Autoimmune encephalitis (AE) is a rapidly progressive inflammatory neurological disease. Underlying autoantibodies can bind to neuronal surfaces and synaptic proteins resulting in psychiatric symptoms, focal neurological signs, autonomic dysfunction and cognitive decline. Early and effective treatment is mandatory to reduce clinical symptoms and to achieve remission. Therapeutic apheresis, involving both plasma exchange (PE) and immunoadsorption (IA), can rapidly remove pathogenic antibodies from the circulation, thus representing an important first-line treatment in AE patients. We here review the most relevant studies regarding therapeutic apheresis in AE, summarizing the outcome for patients and the expanding clinical spectrum of treatment-responsive clinical conditions. For example, patients with slowly progressing cognitive impairment suggesting a neurodegenerative dementia can have underlying autoantibodies and improve with therapeutic apheresis. Findings are encouraging and have led to the first ongoing clinical studies assessing the therapeutic effect of IA in patients with anti-neuronal autoantibodies and the clinical presentation of dementia. Therapeutic apheresis is an established and well tolerated option for first-line therapy in AE and, potentially, other antibody-mediated central nervous system diseases.

9.
PLoS One ; 13(7): e0200602, 2018.
Article in English | MEDLINE | ID: mdl-30011310

ABSTRACT

MicroRNAs (miRNAs) are non-coding RNAs originally involved in RNA silencing and post-transcriptional regulation of gene expression. We have shown in previous work that the miRNA let-7b can act as a signalling molecule for Toll-like receptor 7, thereby initiating innate immune pathways and apoptosis in the central nervous system. Here, we investigated whether different members of the miRNA family let-7, abundantly expressed in the brain, are released into the human cerebrospinal fluid (CSF) and whether quantitative differences in let-7 copies exist in neurodegenerative diseases. RNA isolated from CSF of patients with Alzheimer´s disease (AD) and from control patients with frontotemporal lobe dementia (FTLD), major depressive episode (MDE) without clinical or neurobiological signs of AD, and healthy individuals, was reverse transcribed with primers against nine let-7 family members, and miRNAs were quantified and analyzed comparatively by quantitative PCR. let-7 miRNAs were present in CSF from patients with AD, FTLD, MDE, and healthy controls. However, the amount of individual let-7 miRNAs in the CSF varied substantially. CSF from AD patients contained higher amounts of let-7b and let-7e compared to healthy controls, while no differences were observed regarding the other let-7 miRNAs. No increase in let-7b and let-7e was detected in CSF from FTLD patients, while in CSF from MDE patients, let-7b and let-7e copy levels were elevated. In CSF from AD patients, let-7b and let-7e were associated with extracellular vesicles. let-7 family members present in the CSF mediated neurotoxicity in vitro, albeit to a variable extent. Taken together, neurotoxic let-7 miRNAs are differentially and specifically released in AD, but also in MDE patients. Thus, these miRNAs may mirror common neuropathological paths and by this serve to unscramble mechanisms of different neurodegenerative diseases.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Cell-Derived Microparticles/metabolism , Gene Expression Regulation , MicroRNAs/cerebrospinal fluid , Aged , Aged, 80 and over , Depressive Disorder, Major/cerebrospinal fluid , Female , Frontotemporal Dementia/cerebrospinal fluid , Humans , Male , Middle Aged
10.
SELECTION OF CITATIONS
SEARCH DETAIL
...