Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 176(6): 1340-1355.e15, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30799037

ABSTRACT

Th17 cells provide protection at barrier tissues but may also contribute to immune pathology. The relevance and induction mechanisms of pathologic Th17 responses in humans are poorly understood. Here, we identify the mucocutaneous pathobiont Candida albicans as the major direct inducer of human anti-fungal Th17 cells. Th17 cells directed against other fungi are induced by cross-reactivity to C. albicans. Intestinal inflammation expands total C. albicans and cross-reactive Th17 cells. Strikingly, Th17 cells cross-reactive to the airborne fungus Aspergillus fumigatus are selectively activated and expanded in patients with airway inflammation, especially during acute allergic bronchopulmonary aspergillosis. This indicates a direct link between protective intestinal Th17 responses against C. albicans and lung inflammation caused by airborne fungi. We identify heterologous immunity to a single, ubiquitous member of the microbiota as a central mechanism for systemic induction of human anti-fungal Th17 responses and as a potential risk factor for pulmonary inflammatory diseases.


Subject(s)
Candida albicans/immunology , Th17 Cells/immunology , Th17 Cells/metabolism , Aspergillus fumigatus/immunology , Aspergillus fumigatus/pathogenicity , Candida albicans/pathogenicity , Cross Reactions/immunology , Cystic Fibrosis/immunology , Cystic Fibrosis/microbiology , Humans , Immunity , Immunity, Heterologous/immunology , Th17 Cells/physiology
2.
Front Microbiol ; 8: 1616, 2017.
Article in English | MEDLINE | ID: mdl-28878762

ABSTRACT

FocA is the archetype of the pentameric formate-nitrite transporter (FNT) superfamily of channels, members of which translocate small organic and inorganic anions across the cytoplasmic membrane of microorganisms. The N- and C-termini of each protomer are cytoplasmically oriented. A Y-L-R motif is found immediately after transmembrane helix 6 at the C-terminus of FNT proteins related to FocA, or those with a role in formate translocation. Previous in vivo studies had revealed that formate translocation through FocA was controlled by interaction with the formate-producing glycyl-radical enzyme pyruvate formate-lyase (PflB) or its structural and functional homolog, TdcE. In this study we analyzed the effect on in vivo formate export and import, as well as on the stability of the homopentamer in the membrane, of successively removing amino acid residues from the C-terminus of FocA. Removal of up to five amino acids was without consequence for either formate translocation or oligomer stability. Removal of a sixth residue (R280) prevented formate uptake by FocA in a strain lacking PflB and significantly reduced, but did not prevent, formate export. Sensitivity to the toxic formate analog hypophosphite, which is also transported into the cell by FocA, was also relieved. Circular dichroism spectroscopy and blue-native PAGE analysis revealed, however, that this variant had near identical secondary and quaternary structural properties to those of native FocA. Interaction with the glycyl radical enzyme, TdcE, was also unaffected by removal of the C-terminal 6 amino acid residues, indicating that impaired interaction with TdcE was not the reason for impaired formate translocation. Removal of a further residue (L279) severely restricted formate export, the stability of the protein and its ability to form homopentamers. Together, these studies revealed that the Y278-L279-R280 motif at the C-terminus is essential for bidirectional formate translocation by FocA, but that L279 is both necessary and sufficient for homopentamer integrity.

SELECTION OF CITATIONS
SEARCH DETAIL
...