Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(27)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34187886

ABSTRACT

In matter, any spontaneous symmetry breaking induces a phase transition characterized by an order parameter, such as the magnetization vector in ferromagnets, or a macroscopic many-electron wave function in superconductors. Phase transitions with unknown order parameter are rare but extremely appealing, as they may lead to novel physics. An emblematic and still unsolved example is the transition of the heavy fermion compound [Formula: see text] (URS) into the so-called hidden-order (HO) phase when the temperature drops below [Formula: see text] K. Here, we show that the interaction between the heavy fermion and the conduction band states near the Fermi level has a key role in the emergence of the HO phase. Using angle-resolved photoemission spectroscopy, we find that while the Fermi surfaces of the HO and of a neighboring antiferromagnetic (AFM) phase of well-defined order parameter have the same topography, they differ in the size of some, but not all, of their electron pockets. Such a nonrigid change of the electronic structure indicates that a change in the interaction strength between states near the Fermi level is a crucial ingredient for the HO to AFM phase transition.

2.
Adv Mater ; 28(10): 1976-80, 2016 Mar 09.
Article in English | MEDLINE | ID: mdl-26753522

ABSTRACT

2D electron systems (2DESs) in functional oxides are promising for applications, but their fabrication and use, essentially limited to SrTiO3 -based heterostructures, are hampered by the need for growing complex oxide overlayers thicker than 2 nm using evolved techniques. It is demonstrated that thermal deposition of a monolayer of an elementary reducing agent suffices to create 2DESs in numerous oxides.

3.
Rev Sci Instrum ; 84(10): 104906, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24182150

ABSTRACT

A new technique of high-resolution micro-Raman thermometry using anatase TiO2 microparticles (0.5-3 µm) is presented. These very high spatial resolution measurements (280 nm) reveal temperature gradients even within individual microparticles. Potential applications of this technique are demonstrated by probing the temperature distribution of a micro-fabricated heater consisting of a thin silicon nitride (Si-N) membrane with a gold coil on top of the membrane. Using TiO2 microparticle micro-Raman thermometry, the temperature from the outer edge of the coil to the inner portion was measured to increase by ~40 °C. These high spatial resolution microscopic measurements were also used to measure the temperature gradient within the 20 µm wide Si-N between the gold heating coils. 2D numerical simulations of the micro heater temperature distribution are in excellent agreement with the experimental measurements of the temperatures. These measurements illustrate the potential to extend applications of micro-Raman thermometry to obtain temperature details on a sub-micrometer spatial resolution by employing microparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...