Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 6: 6655, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25851214

ABSTRACT

The cochaperone Sti1/Hop physically links Hsp70 and Hsp90. The protein exhibits one binding site for Hsp90 (TPR2A) and two binding sites for Hsp70 (TPR1 and TPR2B). How these sites are used remained enigmatic. Here we show that Sti1 is a dynamic, elongated protein that consists of a flexible N-terminal module, a long linker and a rigid C-terminal module. Binding of Hsp90 and Hsp70 regulates the Sti1 conformation with Hsp90 binding determining with which site Hsp70 interacts. Without Hsp90, Sti1 is more compact and TPR2B is the high-affinity interaction site for Hsp70. In the presence of Hsp90, Hsp70 shifts its preference. The linker connecting the two modules is crucial for the interaction with Hsp70 and for client activation in vivo. Our results suggest that the interaction of Hsp70 with Sti1 is tightly regulated by Hsp90 to assure transfer of Hsp70 between the modules, as a prerequisite for the efficient client handover.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Molecular Chaperones/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Binding Sites , Escherichia coli , Heat-Shock Proteins/metabolism , In Vitro Techniques , Magnetic Resonance Spectroscopy , Saccharomyces cerevisiae , Surface Plasmon Resonance
2.
EMBO Rep ; 16(2): 240-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25504578

ABSTRACT

In eukaryotes, the molecular chaperones Hsp90 and Hsp70 are connected via the co-chaperone Sti1/Hop, which allows transfer of clients. Here, we show that the basic functions of yeast Sti1 and human Hop are conserved. These include the simultaneous binding of Hsp90 and Hsp70, the inhibition of the ATPase activity of Hsp90, and the ability to support client activation in vivo. Importantly, we reveal that both Hop and Sti1 are subject to inhibitory phosphorylation, although the sites modified and the influence of regulatory phosphorylation is species specific. Phospho-mimetic variants have a reduced ability to activate clients in vivo and different affinity for Hsp70. Hop is more tightly regulated, as phosphorylation affects also the interaction with Hsp90 and induces structural rearrangements in the core part of the protein.


Subject(s)
Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/chemistry , Humans , Molecular Chaperones/chemistry , Phosphorylation , Protein Binding
3.
Nat Commun ; 5: 5484, 2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25407331

ABSTRACT

In eukarya, chaperones Hsp70 and Hsp90 act coordinately in the folding and maturation of a range of key proteins with the help of several co-chaperones, especially Hop. Although biochemical data define the Hop-mediated Hsp70-Hsp90 substrate transfer mechanism, the intrinsic flexibility of these proteins and the dynamic nature of their complexes have limited the structural studies of this mechanism. Here we generate several complexes in the Hsp70/Hsp90 folding pathway (Hsp90:Hop, Hsp90:Hop:Hsp70 and Hsp90:Hop:Hsp70 with a fragment of the client protein glucocorticoid receptor (GR-LBD)), and determine their 3D structure using electron microscopy techniques. Our results show that one Hop molecule binds to one side of the Hsp90 dimer in both extended and compact conformations, through Hop domain rearrangement that take place when Hsp70 or Hsp70:GR-LBD bind to Hsp90:Hop. The compact conformation of the Hsp90:Hop:Hsp70:GR-LBD complex shows that GR-LBD binds to the side of the Hsp90 dimer opposite the Hop attachment site.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/ultrastructure , HSP90 Heat-Shock Proteins/ultrastructure , Heat-Shock Proteins/ultrastructure , Humans , Microscopy, Electron , Protein Binding , Protein Folding , Protein Structure, Tertiary , Receptors, Glucocorticoid/metabolism
4.
Trends Biochem Sci ; 38(5): 253-62, 2013 May.
Article in English | MEDLINE | ID: mdl-23507089

ABSTRACT

The heat shock protein (Hsp)90 chaperone machinery regulates the activity of hundreds of client proteins in the eukaryotic cytosol. It undergoes large conformational changes between states that are similar in energy. These transitions are rate-limiting for the ATPase cycle. It has become evident that several of the many Hsp90 co-chaperones affect the conformational equilibrium by stabilizing specific intermediate states. Consequently, there is an ordered progression of different co-chaperones during the conformational cycle. Asymmetric complexes containing two different co-chaperones may be important for the processing of the client protein, although our understanding of this aspect, as well as the details of the interaction of Hsp90 with client proteins, is still in its infancy.


Subject(s)
HSP90 Heat-Shock Proteins/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Animals , Binding Sites , HSP90 Heat-Shock Proteins/chemistry , Humans , Models, Molecular , Protein Conformation , Protein Processing, Post-Translational
5.
EMBO J ; 31(6): 1506-17, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22227520

ABSTRACT

Sti1/Hop is a modular protein required for the transfer of client proteins from the Hsp70 to the Hsp90 chaperone system in eukaryotes. It binds Hsp70 and Hsp90 simultaneously via TPR (tetratricopeptide repeat) domains. Sti1/Hop contains three TPR domains (TPR1, TPR2A and TPR2B) and two domains of unknown structure (DP1 and DP2). We show that TPR2A is the high affinity Hsp90-binding site and TPR1 and TPR2B bind Hsp70 with moderate affinity. The DP domains exhibit highly homologous α-helical folds as determined by NMR. These, and especially DP2, are important for client activation in vivo. The core module of Sti1 for Hsp90 inhibition is the TPR2A-TPR2B segment. In the crystal structure, the two TPR domains are connected via a rigid linker orienting their peptide-binding sites in opposite directions and allowing the simultaneous binding of TPR2A to the Hsp90 C-terminal domain and of TPR2B to Hsp70. Both domains also interact with the Hsp90 middle domain. The accessory TPR1-DP1 module may serve as an Hsp70-client delivery system for the TPR2A-TPR2B-DP2 segment, which is required for client activation in vivo.


Subject(s)
HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Adenosine Triphosphatases/metabolism , Binding Sites , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , Models, Molecular , Oncogene Protein pp60(v-src)/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Glucocorticoid/metabolism , Saccharomyces cerevisiae/metabolism
6.
Stand Genomic Sci ; 4(2): 210-20, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21677858

ABSTRACT

Oceanithermus profundus Miroshnichenko et al. 2003 is the type species of the genus Oceanithermus, which belongs to the family Thermaceae. The genus currently comprises two species whose members are thermophilic and are able to reduce sulfur compounds and nitrite. The organism is adapted to the salinity of sea water, is able to utilize a broad range of carbohydrates, some proteinaceous substrates, organic acids and alcohols. This is the first completed genome sequence of a member of the genus Oceanithermus and the fourth sequence from the family Thermaceae. The 2,439,291 bp long genome with its 2,391 protein-coding and 54 RNA genes consists of one chromosome and a 135,351 bp long plasmid, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

SELECTION OF CITATIONS
SEARCH DETAIL
...