Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36679623

ABSTRACT

Micro electro-mechanical systems (MEMS) are used to record training and match play of intermittent team sport athletes. Paired with estimates of internal responses or adaptations to exercise, practitioners gain insight into players' dose-response relationship which facilitates the prescription of the training stimuli to optimize performance, prevent injuries, and to guide rehabilitation processes. A systematic review on the relationship between external, wearable-based, and internal parameters in team sport athletes, compliant with the PRISMA guidelines, was conducted. The literature research was performed from earliest record to 1 September 2020 using the databases PubMed, Web of Science, CINAHL, and SportDISCUS. A total of 66 full-text articles were reviewed encompassing 1541 athletes. About 109 different relationships between variables have been reviewed. The most investigated relationship across sports was found between (session) rating of perceived exertion ((session-)RPE) and PlayerLoad™ (PL) with, predominantly, moderate to strong associations (r = 0.49-0.84). Relationships between internal parameters and highly dynamic, anaerobic movements were heterogenous. Relationships between average heart rate (HR), Edward's and Banister's training impulse (TRIMP) seem to be reflected in parameters of overall activity such as PL and TD for running-intensive team sports. PL may further be suitable to estimate the overall subjective perception. To identify high fine-structured loading-relative to a certain type of sport-more specific measures and devices are needed. Individualization of parameters could be helpful to enhance practicality.


Subject(s)
Running , Wearable Electronic Devices , Humans , Physical Exertion/physiology , Athletes , Running/physiology , Team Sports
2.
Article in English | MEDLINE | ID: mdl-33345066

ABSTRACT

This study aimed to determine whether spikes in acute:chronic workload ratio (ACWR) are associated with injury incidence, and to examine the differences in external load due to greater or lesser exposure to matches and the long-term effects of the load during a chronic seasonal period. Fifteen professional soccer players belonging to the squad of a European Champions League club were enrolled in this study. External training and match load were assessed from all athletes using a global positioning system (GPS). We calculated the uncoupled ACWR for 10 consecutive competitive microcycles. Injuries were identified and determined by the days of absence. The differences in external load were determined using a linear mixed-model approach. In addition to the null hypothesis testing, the effect size was calculated. Thirteen athletes who did not suffer an injury exceeded several times the critical threshold of an ACWR > 1.5. This is equivalent to 1 player exceeding the critical threshold for ACWR in total distance (TD), 2 players for ACWR at distance covered above moderate speed (MSD), 2 players for ACWR at distance covered above high speed (HSD), 2 players for ACWR at distance covered above very high speed (VHSD), and 2 players for ACWR in DC at sprint per week. One athlete experienced a non-contact muscle strain injury and another a contact -injury manifested as a concussion; both athletes document an ACWR <1.5 within the 4 weeks prior to the injury event. Players with lesser participation in official games covered lower TD (-19.6%, very-large ES), MSD (-24.8%, very-large ES), HSD (-25.1%, moderate ES), VHSD (-25.5%, moderate ES), and DC at sprint (-30.6%, moderate ES) over the course of the 10-weeks period in comparison with the players with greater participation in official games. The present study demonstrated that spikes in the ACWR were not related to a subsequent injury occurrence in professional soccer players. Differences in participation in official games caused significant imbalances in the chronic external loads between players in a squad, which should be minimized in training sessions in order to prevent substantial changes in workload for those who usually do not play.

3.
PLoS One ; 12(7): e0181781, 2017.
Article in English | MEDLINE | ID: mdl-28742832

ABSTRACT

The relationship between the time duration of movement (t(dur)) and related maximum possible power output has been studied and modeled under many conditions. Inspired by the so-called power profiles known for discontinuous endurance sports like cycling, and the critical power concept of Monod and Scherrer, the aim of this study was to evaluate the numerical characteristics of the function between maximum horizontal movement velocity (HSpeed) and t(dur) in soccer. To evaluate this relationship, GPS data from 38 healthy soccer players and 82 game participations (≥30 min active playtime) were used to select maximum HSpeed for 21 distinct t(dur) values (between 0.3 s and 2,700 s) based on moving medians with an incremental t(dur) window-size. As a result, the relationship between HSpeed and Log(t(dur)) appeared reproducibly as a sigmoidal decay function, and could be fitted to a five-parameter equation with upper and lower asymptotes, and an inflection point, power and decrease rate. Thus, the first three parameters described individual characteristics if evaluated using mixed-model analysis. This study shows for the first time the general numerical relationship between t(dur) and HSpeed in soccer games. In contrast to former descriptions that have evaluated speed against power, HSpeed against t(dur) always yields a sigmoidal shape with a new upper asymptote. The evaluated curve fit potentially describes the maximum moving speed of individual players during the game, and allows for concise interpretations of the functional state of team sports athletes.


Subject(s)
Movement/physiology , Soccer/physiology , Walking Speed/physiology , Adolescent , Athletic Performance/physiology , Female , Humans , Male , Running/physiology , Video Recording , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...