Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
bioRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-35547855

ABSTRACT

Clinical diagnosis typically incorporates physical examination, patient history, and various laboratory tests and imaging studies, but makes limited use of the human system's own record of antigen exposures encoded by receptors on B cells and T cells. We analyzed immune receptor datasets from 593 individuals to develop MAchine Learning for Immunological Diagnosis (Mal-ID) , an interpretive framework to screen for multiple illnesses simultaneously or precisely test for one condition. This approach detects specific infections, autoimmune disorders, vaccine responses, and disease severity differences. Human-interpretable features of the model recapitulate known immune responses to SARS-CoV-2, Influenza, and HIV, highlight antigen-specific receptors, and reveal distinct characteristics of Systemic Lupus Erythematosus and Type-1 Diabetes autoreactivity. This analysis framework has broad potential for scientific and clinical interpretation of human immune responses.

2.
Annu Rev Pathol ; 19: 69-97, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-37738512

ABSTRACT

As the COVID-19 pandemic has evolved during the past years, interactions between human immune systems, rapidly mutating and selected SARS-CoV-2 viral variants, and effective vaccines have complicated the landscape of individual immunological histories. Here, we review some key findings for antibody and B cell-mediated immunity, including responses to the highly mutated omicron variants; immunological imprinting and other impacts of successive viral antigenic variant exposures on antibody and B cell memory; responses in secondary lymphoid and mucosal tissues and non-neutralizing antibody-mediated immunity; responses in populations vulnerable to severe disease such as those with cancer, immunodeficiencies, and other comorbidities, as well as populations showing apparent resistance to severe disease such as many African populations; and evidence of antibody involvement in postacute sequelae of infection or long COVID. Despite the initial phase of the pandemic ending, human populations will continue to face challenges presented by this unpredictable virus.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Pandemics , SARS-CoV-2 , Antibodies , Vaccination
3.
J Allergy Clin Immunol Pract ; 11(8): 2534-2541.e2, 2023 08.
Article in English | MEDLINE | ID: mdl-37182564

ABSTRACT

BACKGROUND: For patients with primary antibody deficiency, the first line of therapy is replacement with immunoglobulin (Ig) products. Prior to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, Ig products did not contain antibodies with specificity for this virus, and there have been limited data on the antibodies present in the Ig products in current use. OBJECTIVE: To quantitatively examine SARS-CoV-2 antibodies in current Ig products. METHODS: We examined 142 unique lots of 11 different Ig products intended for intravenous and/or subcutaneous delivery for IgG-binding activities against recombinant SARS-CoV-2 receptor binding domain, spike, and nucleocapsid proteins by enzyme-linked immunosorbent assays. In addition, to assess functionality, 48 of these unique lots were assessed for their ability to inhibit the variants SARS-CoV-2 Ancestral, Alpha, Beta, Delta, and Omicron spike binding to angiotensin-converting enzyme 2 (ACE2). RESULTS: Significantly increased antibody values were observed for products manufactured after the year 2020 (expiration dates 2023-2024), as compared with Ig products before 2020 (prepandemic). Sixty percent and 85% of the Ig products with expiration dates of 2023 and 2024 were positive for antibody to SARS-CoV-2 proteins, respectively. The area under the curve values were significantly higher in products with later expiration dates. Later dates of expiration were also strongly correlated with inhibition of ACE2-binding activity; however, a decline in inhibition activity was observed with later variants. CONCLUSIONS: Overall, more recent Ig products (expiration dates 2023-2025) contained significantly higher binding and inhibition activities against SARS-CoV-2 proteins, compared with earlier, or prepandemic products. Normal donor SARS-CoV-2 antibodies are capable of inhibiting ACE2-binding activities and may provide a therapeutic benefit for patients who do not make a robust vaccine response.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , Antibodies, Viral
4.
Res Sq ; 2023 May 05.
Article in English | MEDLINE | ID: mdl-37205380

ABSTRACT

Tissue-resident immunity underlies essential host defenses against pathogens, but analysis in humans has lacked in vitro model systems where epithelial infection and accompanying resident immune cell responses can be observed en bloc. Indeed, human primary epithelial organoid cultures typically omit immune cells, and human tissue resident-memory lymphocytes are conventionally assayed without an epithelial infection component, for instance from peripheral blood, or after extraction from organs. Further, the study of resident immunity in animals can be complicated by interchange between tissue and peripheral immune compartments. To study human tissue-resident infectious immune responses in isolation from secondary lymphoid organs, we generated adult human lung three-dimensional air-liquid interface (ALI) lung organoids from intact tissue fragments that co-preserve epithelial and stromal architecture alongside endogenous lung-resident immune subsets. These included T, B, NK and myeloid cells, with CD69+CD103+ tissue-resident and CCR7- and/or CD45RA- TRM and conservation of T cell receptor repertoires, all corresponding to matched fresh tissue. SARS-CoV-2 vigorously infected organoid lung epithelium, alongside secondary induction of innate cytokine production that was inhibited by antiviral agents. Notably, SARS-CoV-2-infected organoids manifested adaptive virus-specific T cell activation that was specific for seropositive and/or previously infected donor individuals. This holistic non-reconstitutive organoid system demonstrates the sufficiency of lung to autonomously mount adaptive T cell memory responses without a peripheral lymphoid component, and represents an enabling method for the study of human tissue-resident immunity.

5.
Immunity ; 56(4): 864-878.e4, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36996809

ABSTRACT

T cells are a critical component of the response to SARS-CoV-2, but their kinetics after infection and vaccination are insufficiently understood. Using "spheromer" peptide-MHC multimer reagents, we analyzed healthy subjects receiving two doses of the Pfizer/BioNTech BNT162b2 vaccine. Vaccination resulted in robust spike-specific T cell responses for the dominant CD4+ (HLA-DRB1∗15:01/S191) and CD8+ (HLA-A∗02/S691) T cell epitopes. Antigen-specific CD4+ and CD8+ T cell responses were asynchronous, with the peak CD4+ T cell responses occurring 1 week post the second vaccination (boost), whereas CD8+ T cells peaked 2 weeks later. These peripheral T cell responses were elevated compared with COVID-19 patients. We also found that previous SARS-CoV-2 infection resulted in decreased CD8+ T cell activation and expansion, suggesting that previous infection can influence the T cell response to vaccination.


Subject(s)
COVID-19 , Vaccines , Humans , CD8-Positive T-Lymphocytes , BNT162 Vaccine , SARS-CoV-2 , Vaccination , Antibodies, Viral
6.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: mdl-35801588

ABSTRACT

BACKGROUNDProlonged symptoms after SARS-CoV-2 infection are well documented. However, which factors influence development of long-term symptoms, how symptoms vary across ethnic groups, and whether long-term symptoms correlate with biomarkers are points that remain elusive.METHODSAdult SARS-CoV-2 reverse transcription PCR-positive (RT-PCR-positive) patients were recruited at Stanford from March 2020 to February 2021. Study participants were seen for in-person visits at diagnosis and every 1-3 months for up to 1 year after diagnosis; they completed symptom surveys and underwent blood draws and nasal swab collections at each visit.RESULTSOur cohort (n = 617) ranged from asymptomatic to critical COVID-19 infections. In total, 40% of participants reported at least 1 symptom associated with COVID-19 six months after diagnosis. Median time from diagnosis to first resolution of all symptoms was 44 days; median time from diagnosis to sustained symptom resolution with no recurring symptoms for 1 month or longer was 214 days. Anti-nucleocapsid IgG level in the first week after positive RT-PCR test and history of lung disease were associated with time to sustained symptom resolution. COVID-19 disease severity, ethnicity, age, sex, and remdesivir use did not affect time to sustained symptom resolution.CONCLUSIONWe found that all disease severities had a similar risk of developing post-COVID-19 syndrome in an ethnically diverse population. Comorbid lung disease and lower levels of initial IgG response to SARS-CoV-2 nucleocapsid antigen were associated with longer symptom duration.TRIAL REGISTRATIONClinicalTrials.gov, NCT04373148.FUNDINGNIH UL1TR003142 CTSA grant, NIH U54CA260517 grant, NIEHS R21 ES03304901, Sean N Parker Center for Allergy and Asthma Research at Stanford University, Chan Zuckerberg Biohub, Chan Zuckerberg Initiative, Sunshine Foundation, Crown Foundation, and Parker Foundation.


Subject(s)
COVID-19 , COVID-19/complications , Humans , Immunoglobulin G , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
7.
J Neuropathol Exp Neurol ; 81(9): 666-695, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35818336

ABSTRACT

Brains of 42 COVID-19 decedents and 107 non-COVID-19 controls were studied. RT-PCR screening of 16 regions from 20 COVID-19 autopsies found SARS-CoV-2 E gene viral sequences in 7 regions (2.5% of 320 samples), concentrated in 4/20 subjects (20%). Additional screening of olfactory bulb (OB), amygdala (AMY) and entorhinal area for E, N1, N2, RNA-dependent RNA polymerase, and S gene sequences detected one or more of these in OB in 8/21 subjects (38%). It is uncertain whether these RNA sequences represent viable virus. Significant histopathology was limited to 2/42 cases (4.8%), one with a large acute cerebral infarct and one with hemorrhagic encephalitis. Case-control RNAseq in OB and AMY found more than 5000 and 700 differentially expressed genes, respectively, unrelated to RT-PCR results; these involved immune response, neuronal constituents, and olfactory/taste receptor genes. Olfactory marker protein-1 reduction indicated COVID-19-related loss of OB olfactory mucosa afferents. Iba-1-immunoreactive microglia had reduced area fractions in cerebellar cortex and AMY, and cytokine arrays showed generalized downregulation in AMY and upregulation in blood serum in COVID-19 cases. Although OB is a major brain portal for SARS-CoV-2, COVID-19 brain changes are more likely due to blood-borne immune mediators and trans-synaptic gene expression changes arising from OB deafferentation.


Subject(s)
COVID-19 , SARS-CoV-2 , Brain , Gene Expression , Humans , Immunity
8.
Cell ; 185(6): 1025-1040.e14, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35148837

ABSTRACT

During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination.


Subject(s)
Antibodies, Viral , BNT162 Vaccine , COVID-19 , Germinal Center , Antigens, Viral , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vaccination
9.
Cell Mol Immunol ; 19(2): 222-233, 2022 02.
Article in English | MEDLINE | ID: mdl-34983950

ABSTRACT

Although antivirals are important tools to control severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, effective vaccines are essential to control the current coronavirus disease 2019 (COVID-19) pandemic. Plant-derived virus-like particle (VLP) vaccine candidates have previously demonstrated immunogenicity and efficacy against influenza. Here, we report the immunogenicity and protection induced in rhesus macaques by intramuscular injections of a VLP bearing a SARS-CoV-2 spike protein (CoVLP) vaccine candidate formulated with or without Adjuvant System 03 (AS03) or cytidine-phospho-guanosine (CpG) 1018. Although a single dose of the unadjuvanted CoVLP vaccine candidate stimulated humoral and cell-mediated immune responses, booster immunization (at 28 days after priming) and adjuvant administration significantly improved both responses, with higher immunogenicity and protection provided by the AS03-adjuvanted CoVLP. Fifteen micrograms of CoVLP adjuvanted with AS03 induced a polyfunctional interleukin-2 (IL-2)-driven response and IL-4 expression in CD4 T cells. Animals were challenged by multiple routes (i.e., intratracheal, intranasal, and ocular) with a total viral dose of 106 plaque-forming units of SARS-CoV-2. Lower viral replication in nasal swabs and bronchoalveolar lavage fluid (BALF) as well as fewer SARS-CoV-2-infected cells and immune cell infiltrates in the lungs concomitant with reduced levels of proinflammatory cytokines and chemotactic factors in the BALF were observed in animals immunized with the CoVLP adjuvanted with AS03. No clinical, pathologic, or virologic evidence of vaccine-associated enhanced disease was observed in vaccinated animals. The CoVLP adjuvanted with AS03 was therefore selected for vaccine development and clinical trials.


Subject(s)
Adjuvants, Immunologic/adverse effects , COVID-19 Vaccines/adverse effects , COVID-19/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine/immunology , Nicotiana/metabolism , Pandemics/prevention & control , Polysorbates/adverse effects , SARS-CoV-2/immunology , Squalene/adverse effects , Vaccination/methods , Vaccines, Virus-Like Particle/adverse effects , alpha-Tocopherol/adverse effects , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Disease Models, Animal , Drug Combinations , Drug Compounding/methods , Immunity, Humoral , Macaca mulatta , Male , Polysorbates/administration & dosage , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Squalene/administration & dosage , Treatment Outcome , Vaccines, Virus-Like Particle/administration & dosage , alpha-Tocopherol/administration & dosage
10.
Methods Mol Biol ; 2387: 3-6, 2022.
Article in English | MEDLINE | ID: mdl-34643896

ABSTRACT

Enhanced international research efforts since the establishment of the Global BU Initiative in 1998 by the WHO have helped to advance our understanding of the epidemiology, and pathogenesis of Mycobacterium ulcerans infections. Improved methods to cultivate the extremely slow-growing pathogen from BU lesions have laid the groundwork for a variety of studies using M. ulcerans isolates, including the analysis of the genome and proteome of the pathogen, as well as drug susceptibility testing and analyses of host-pathogen interactions in vitro and in animal models. The identification of specific, high-copy number target sequences in the genome of M. ulcerans has enabled the development of diagnostic tests and assays to detect the pathogen in the environment. Important research questions remain about the reservoir(s) of M. ulcerans in aquatic environments, factors leading to or promoting transmission to hosts, and host-pathogen interactions resulting in chronic infection versus spontaneous healing.


Subject(s)
Buruli Ulcer , Mycobacterium ulcerans , Animals , Buruli Ulcer/diagnosis , Buruli Ulcer/epidemiology , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Mycobacterium ulcerans/genetics , Persistent Infection
11.
Methods Mol Biol ; 2387: 105-108, 2022.
Article in English | MEDLINE | ID: mdl-34643906

ABSTRACT

The acquisition by a Mycobacterium marinum-like progenitor of a plasmid encoding enzymes for the biosynthesis of the highly potent macrolide toxin mycolactone has set off the evolution of M. ulcerans toward a new mycobacterial species. While the selective advantage of producing mycolactone for survival in environmental niche(s) of the pathogen is unclear, there is no doubt that the cytotoxic, immunomodulatory, and analgesic properties of mycolactone are key for the establishment and progression of M. ulcerans infections in the host. Improved procedures for the isolation, handling, and detection of the amphiphilic and light-sensitive toxin have facilitated studies to unravel molecular mechanisms of mycolactone action on host cells in vitro and on cellular and immune responses in animal models. The pivotal role of mycolactone in the pathology of Buruli ulcer and the fact that the toxin has not been associated with other pathogens make it an ideal target for therapeutics/vaccines aiming at mycolactone neutralization and for the development of assays for the diagnosis of the disease.


Subject(s)
Mycobacterium ulcerans , Animals , Bacterial Toxins , Buruli Ulcer/drug therapy , Macrolides
12.
Methods Mol Biol ; 2387: 185-187, 2022.
Article in English | MEDLINE | ID: mdl-34643912

ABSTRACT

For many years, wide margin surgical excision of Buruli ulcer lesions has been the main approach for the treatment of Mycobacterium ulcerans disease. The WHO now recommends an eight-week course of oral antibiotics with a combination of rifampicin and clarithromycin in Africa. However, disease management is complicated by social stigma, lack of awareness, and limited access to healthcare facilities, resulting in underreporting and frequently late initiation of medical treatment. Inadequate initial treatment can drive permanent disabilities and also limited compliance to the eight-week therapy is a limitation. Therefore, search for a faster and more simple treatment modality is ongoing, focusing primarily on the testing of new tuberculosis drug candidates for the treatment of M. ulcerans disease.


Subject(s)
Buruli Ulcer , Mycobacterium ulcerans , Anti-Bacterial Agents/therapeutic use , Buruli Ulcer/drug therapy , Clarithromycin/therapeutic use , Drug Therapy, Combination , Humans , Pharmaceutical Preparations
13.
Vaccines (Basel) ; 11(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36679852

ABSTRACT

Recovery from COVID-19 is associated with production of anti-SARS-CoV-2 antibodies, but it is uncertain whether these confer immunity. We describe viral RNA shedding duration in hospitalized patients and identify patients with recurrent shedding. We sequenced viruses from two distinct episodes of symptomatic COVID-19 separated by 144 days in a single patient, to conclusively describe reinfection with a different strain harboring the spike variant D614G. This case of reinfection was one of the first cases of reinfection reported in 2020. With antibody, B cell and T cell analytics, we show correlates of adaptive immunity at reinfection, including a differential response in neutralizing antibodies to a D614G pseudovirus. Finally, we discuss implications for vaccine programs and begin to define benchmarks for protection against reinfection from SARS-CoV-2.

14.
Cell Host Microbe ; 29(12): 1738-1743.e4, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34861167

ABSTRACT

Different SARS-CoV-2 vaccines are approved in various countries, but few direct comparisons of the antibody responses they stimulate have been reported. We collected plasma specimens in July 2021 from 196 Mongolian participants fully vaccinated with one of four COVID-19 vaccines: Pfizer/BioNTech, AstraZeneca, Sputnik V, and Sinopharm. Functional antibody testing with a panel of nine SARS-CoV-2 viral variant receptor binding domain (RBD) proteins revealed marked differences in vaccine responses, with low antibody levels and RBD-ACE2 blocking activity stimulated by the Sinopharm and Sputnik V vaccines in comparison to the AstraZeneca or Pfizer/BioNTech vaccines. The Alpha variant caused 97% of infections in Mongolia in June and early July 2021. Individuals who recover from SARS-CoV-2 infection after vaccination achieve high antibody titers in most cases. These data suggest that public health interventions such as vaccine boosting, potentially with more potent vaccine types, may be needed to control COVID-19 in Mongolia and worldwide.


Subject(s)
Antibodies, Viral/blood , BNT162 Vaccine/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , ChAdOx1 nCoV-19/administration & dosage , Mass Vaccination , SARS-CoV-2/drug effects , Adult , Aged , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Viral/biosynthesis , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Female , Gene Expression , Humans , Immune Sera/chemistry , Immunogenicity, Vaccine , Male , Middle Aged , Mongolia/epidemiology , Retrospective Studies , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
15.
Clin Chem ; 68(1): 204-213, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34605900

ABSTRACT

BACKGROUND: Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid antigen in blood has been described, but the diagnostic and prognostic role of antigenemia is not well understood. This study aimed to determine the frequency, duration, and concentration of nucleocapsid antigen in plasma and its association with coronavirus disease 2019 (COVID-19) severity. METHODS: We utilized an ultrasensitive electrochemiluminescence immunoassay targeting SARS-CoV-2 nucleocapsid antigen to evaluate 777 plasma samples from 104 individuals with COVID-19. We compared plasma antigen to respiratory nucleic acid amplification testing (NAAT) in 74 individuals with COVID-19 from samples collected ±1 day of diagnostic respiratory NAAT and in 52 SARS-CoV-2-negative individuals. We used Kruskal-Wallis tests, multivariable logistic regression, and mixed-effects modeling to evaluate whether plasma antigen concentration was associated with disease severity. RESULTS: Plasma antigen had 91.9% (95% CI 83.2%-97.0%) clinical sensitivity and 94.2% (84.1%-98.8%) clinical specificity. Antigen-negative plasma samples belonged to patients with later respiratory cycle thresholds (Ct) when compared with antigen-positive plasma samples. Median plasma antigen concentration (log10 fg/mL) was 5.4 (interquartile range 3.9-6.0) in outpatients, 6.0 (5.4-6.5) in inpatients, and 6.6 (6.1-7.2) in intensive care unit (ICU) patients. In models adjusted for age, sex, diabetes, and hypertension, plasma antigen concentration at diagnosis was associated with ICU admission [odds ratio 2.8 (95% CI 1.2-6.2), P=.01] but not with non-ICU hospitalization. Rate of antigen decrease was not associated with disease severity. CONCLUSIONS: SARS-CoV-2 plasma nucleocapsid antigen exhibited comparable diagnostic performance to upper respiratory NAAT, especially among those with late respiratory Ct. In addition to currently available tools, antigenemia may facilitate patient triage to optimize intensive care utilization.


Subject(s)
Antigens, Viral/blood , COVID-19 Testing/methods , COVID-19 , Coronavirus Nucleocapsid Proteins/blood , COVID-19/diagnosis , Electrochemical Techniques , Hospitalization , Humans , Immunoassay , Luminescent Measurements , Nucleocapsid , Phosphoproteins/blood , SARS-CoV-2 , Sensitivity and Specificity
16.
Front Immunol ; 12: 739037, 2021.
Article in English | MEDLINE | ID: mdl-34594341

ABSTRACT

Background: Transfusion of COVID-19 convalescent plasma (CCP) containing high titers of anti-SARS-CoV-2 antibodies serves as therapy for COVID-19 patients. Transfusions early during disease course was found to be beneficial. Lessons from the SARS-CoV-2 pandemic could inform early responses to future pandemics and may continue to be relevant in lower resource settings. We sought to identify factors correlating to high antibody titers in convalescent plasma donors and understand the magnitude and pharmacokinetic time course of both transfused antibody titers and the endogenous antibody titers in transfused recipients. Methods: Plasma samples were collected up to 174 days after convalescence from 93 CCP donors with mild disease, and from 16 COVID-19 patients before and after transfusion. Using ELISA, anti-SARS-CoV-2 Spike RBD, S1, and N-protein antibodies, as well as capacity of antibodies to block ACE2 from binding to RBD was measured in an in vitro assay. As an estimate for viral load, viral RNA and N-protein plasma levels were assessed in COVID-19 patients. Results: Anti-SARS-CoV-2 antibody levels and RBD-ACE2 blocking capacity were highest within the first 60 days after symptom resolution and markedly decreased after 120 days. Highest antibody titers were found in CCP donors that experienced fever. Effect of transfused CCP was detectable in COVID-19 patients who received high-titer CCP and had not seroconverted at the time of transfusion. Decrease in viral RNA was seen in two of these patients. Conclusion: Our results suggest that high titer CCP should be collected within 60 days after recovery from donors with past fever. The much lower titers conferred by transfused antibodies compared to endogenous production in the patient underscore the importance of providing CCP prior to endogenous seroconversion.


Subject(s)
COVID-19/therapy , Convalescence , SARS-CoV-2/immunology , Seroconversion , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/blood , Blood Donors , COVID-19/blood , COVID-19/immunology , Female , Humans , Immunization, Passive , Kinetics , Male , Middle Aged , Outpatients , RNA, Viral/blood , COVID-19 Serotherapy
17.
Cell Host Microbe ; 29(7): 1063-1075, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34174992

ABSTRACT

Antibodies, and the B cell and plasma cell populations responsible for their production, are key components of the human immune system's response to SARS-CoV-2, which has caused the coronavirus disease 2019 (COVID-19) pandemic. Here, we review findings addressing the nature of antibody responses against SARS-CoV-2 and their role in protecting from infection or modulating COVID-19 disease severity. In just over a year, much has been learned, and replicated in independent studies, about human immune responses to this pathogen, contributing to the development of effective vaccines. Nevertheless, important questions remain about the duration and effectiveness of antibody responses, differences between immunity derived from infection compared to vaccination, the cellular basis for serological findings, and the extent to which viral variants will escape from current immunity.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , COVID-19 Vaccines/therapeutic use , COVID-19/immunology , SARS-CoV-2/immunology , Vaccination , Cross Reactions , Humans , Immunity , Immunity, Mucosal , Pandemics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
18.
Arch Pathol Lab Med ; 145(10): 1221-1227, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34101801

ABSTRACT

CONTEXT.­: The ongoing COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has elicited a surge in demand for serologic testing to identify previously infected individuals. In particular, antibody testing is crucial in identifying COVID-19 convalescent plasma, which has been approved by the Food and Drug Administration under the Emergency Use Authorization for use as passive immunotherapy for hospitalized patients infected with COVID-19. Currently, high-titer COVID-19 convalescent plasma can be qualified by Ortho's Vitros COVID-19 IgG antibody test. OBJECTIVE.­: To explore the use of an efficient testing method to identify high-titer COVID-19 convalescent plasma for use in treating COVID-19-infected patients and track COVID-19 positivity over time. DESIGN.­: We evaluated an enzyme-linked immunosorbent assay (ELISA)-based method that detects antibodies specific to the SARS-CoV-2 receptor binding domain (RBD) with individual and pooled plasma samples and compared its performance against the Vitros COVID-19 IgG antibody test. Using the pooled RBD-ELISA (P-RE) method, we also screened more than 10 000 longitudinal healthy blood donor samples to assess seroprevalence. RESULTS.­: P-RE demonstrates 100% sensitivity in detecting Food and Drug Administration-defined high-titer samples when compared with the Vitros COVID-19 IgG antibody test. Overall sensitivity of P-RE when compared with the Vitros COVID-19 IgG antibody test and our individual sample RBD-ELISA (I-RE) were 83% and 56%, respectively. When screening 10 218 healthy blood donor samples by P-RE, we found the seroprevalence correlated with the local infection rates with a correlation coefficient of 0.21 (P < .001). CONCLUSIONS.­: Pooling plasma samples can be used to efficiently screen large populations for individuals with high-titer anti-RBD antibodies, important for COVID-19 convalescent plasma identification.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Antibodies, Viral/blood , Blood Donors/statistics & numerical data , COVID-19/epidemiology , COVID-19/virology , Humans , Immunoglobulin G/blood , Pandemics/prevention & control , Reproducibility of Results , SARS-CoV-2/physiology , Sensitivity and Specificity , Seroepidemiologic Studies
19.
J Clin Virol ; 139: 104818, 2021 06.
Article in English | MEDLINE | ID: mdl-33932848

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) endgame may benefit from simple, accurate antibody testing to characterize seroprevalence and immunization coverage. OBJECTIVES: To evaluate the performance of the lateral flow QIAreach anti-SARS-CoV-2 Total rapid nanoparticle fluorescence immunoassay compared to reference isotype-specific IgG, IgM, and IgA SARS-CoV-2 ELISA using S1 or receptor binding domain (RBD) as antigens. STUDY DESIGN: A diagnostic comparison study was carried out using 154 well-characterized heparin plasma samples. Agreement between assays was assessed by overall, positive, and negative percent agreement and Cohen's kappa coefficient. RESULTS: Overall agreement between the QIAreach anti-SARS-CoV-2 Total and any anti-spike domain (S1 or RBD) antibody isotype was 96.0 % (95 % CI 89.8-98.8), the positive percent agreement was 97.6 % (95 % CI 91.0-99.9), the negative percent agreement was 88.2 % (95 % CI 64.4-98.0). The kappa coefficient was 0.86 (95 % CI 0.72 to 0.99). CONCLUSION: The QIAreach anti-SARS-CoV-2 Total rapid antibody test provides comparable performance to high-complexity, laboratory-based ELISA.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Fluorescent Antibody Technique/methods , SARS-CoV-2/immunology , Adult , Aged , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Nanoparticles
20.
medRxiv ; 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33851181

ABSTRACT

During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, new vaccine strategies including lipid nanoparticle delivery of antigen encoding RNA have been deployed globally. The BioNTech/Pfizer mRNA vaccine BNT162b2 encoding SARS-CoV-2 spike protein shows 95% efficacy in preventing disease, but it is unclear how the antibody responses to vaccination differ from those generated by infection. Here we compare the magnitude and breadth of antibodies targeting SARS-CoV-2, SARS-CoV-2 variants of concern, and endemic coronaviruses, in vaccinees and infected patients. We find that vaccination differs from infection in the dominance of IgG over IgM and IgA responses, with IgG reaching levels similar to those of severely ill COVID-19 patients and shows decreased breadth of the antibody response targeting endemic coronaviruses. Viral variants of concern from B.1.1.7 to P.1 to B.1.351 form a remarkably consistent hierarchy of progressively decreasing antibody recognition by both vaccinees and infected patients exposed to Wuhan-Hu-1 antigens.

SELECTION OF CITATIONS
SEARCH DETAIL
...