Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters










Publication year range
1.
Cells ; 12(14)2023 07 20.
Article in English | MEDLINE | ID: mdl-37508560

ABSTRACT

Aberrant glycosylation plays a crucial role in tumour progression and invasiveness. Tumour-associated carbohydrate antigens (TACAs) represent a valuable set of targets for immunotherapeutic approaches. The poor immunogenicity of glycan structures, however, requires a more effective and well-directed way of targeting TACAs on the surface of cancer cells than antibodies. The glycosphingolipid globotriaosylceramide (Gb3) is a well-established TACA present in a multitude of cancer types. Its overexpression has been linked to metastasis, invasiveness, and multidrug resistance. In the present study, we propose to use a dimeric fragment of the Shiga toxin B-subunit (StxB) to selectively target Gb3-positive cancer cells in a StxB-scFv UCHT1 lectibody. The lectibody, comprised of a lectin and the UCHT1 antibody fragment, was produced in E. coli and purified via Ni-NTA affinity chromatography. Specificity of the lectibody towards Gb3-positive cancer cell lines and specificity towards the CD3 receptor on T cells, was assessed using flow cytometry. We evaluated the efficacy of the lectibody in redirecting T cell cytotoxicity towards Gb3-overexpressing cancer cells in luciferase-based cytotoxicity in vitro assays. The StxB-scFv UCHT1 lectibody has proven specific for Gb3 and could induce the killing of up to 80% of Gb3-overexpressing cancer cells in haemorrhagic and solid tumours. The lectibody developed in this study, therefore, highlights the potential that lectibodies and lectins in general have for usage in immunotherapeutic approaches to boost the efficacy of established cancer treatments.


Subject(s)
Neoplasms , Shiga Toxin , Humans , Shiga Toxin/chemistry , Shiga Toxin/metabolism , Escherichia coli/metabolism , T-Lymphocytes/metabolism , Glycosphingolipids/metabolism
2.
Traffic ; 24(10): 453-462, 2023 10.
Article in English | MEDLINE | ID: mdl-37403269

ABSTRACT

Each cell in a multicellular organism permanently adjusts the concentration of its cell surface proteins. In particular, epithelial cells tightly control the number of carriers, transporters and cell adhesion proteins at their plasma membrane. However, sensitively measuring the cell surface concentration of a particular protein of interest in live cells and in real time represents a considerable challenge. Here, we introduce a novel approach based on split luciferases, which uses one luciferase fragment as a tag on the protein of interest and the second fragment as a supplement to the extracellular medium. Once the protein of interest arrives at the cell surface, the luciferase fragments complement and generate luminescence. We compared the performance of split Gaussia luciferase and split Nanoluciferase by using a system to synchronize biosynthetic trafficking with conditional aggregation domains. The best results were achieved with split Nanoluciferase, for which luminescence increased more than 6000-fold upon recombination. Furthermore, we showed that our approach can separately detect and quantify the arrival of membrane proteins at the apical and basolateral plasma membrane in single polarized epithelial cells by detecting the luminescence signals with a microscope, thus opening novel avenues for characterizing the variations in trafficking in individual epithelial cells.


Subject(s)
Epithelial Cells , Membrane Proteins , Membrane Proteins/metabolism , Epithelial Cells/metabolism , Cell Membrane/metabolism , Luciferases/genetics , Luciferases/metabolism , Cell Polarity
3.
ACS Omega ; 8(17): 15406-15421, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37151527

ABSTRACT

In recent years, receptor-mediated drug delivery has gained major attention in the treatment of cancer. The pathogen-derived Shiga Toxin B subunit (STxB) can be used as a carrier that detects the tumor-associated glycosphingolipid globotriaosylceramide (Gb3) receptors. While drug conjugation via lysine or cysteine offers random drug attachment to carriers, click chemistry has the potential to improve the engineering of delivery systems as the site specificity can eliminate interference with the active binding site of tumor ligands. We present the production of recombinant STxB in its wild-type (STxBwt) version or incorporating the noncanonical amino acid azido lysine (STxBAzK). The STxBwt and STxBAzK were manufactured using a growth-decoupled Escherichia coli (E. coli)-based expression strain and analyzed via flow cytometry for Gb3 receptor recognition and specificity on two human colorectal adenocarcinoma cell lines-HT-29 and LS-174-characterized by high and low Gb3 abundance, respectively. Furthermore, STxBAzK was clicked to the antineoplastic agent monomethyl auristatin E (MMAE) and evaluated in cell-killing assays for its ability to deliver the drug to Gb3-expressing tumor cells. The STxBAzK-MMAE conjugate induced uptake and release of the MMAE drug in Gb3-positive tumor cells, reaching 94% of HT-29 cell elimination at 72 h post-treatment and low nanomolar doses while sparing LS-174 cells. STxBAzK is therefore presented as a well-functioning drug carrier, with a possible application in cancer therapy. This research demonstrates the feasibility of lectin carriers used in delivering drugs to tumor cells, with prospects for improved cancer therapy in terms of straightforward drug attachment and effective cancer cell elimination.

4.
N Biotechnol ; 76: 127-137, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37257818

ABSTRACT

Antibody-based cancer therapies have been evolving at a rapid pace in the pharmaceutical market. Bispecific antibody-drug conjugates that engage immune cells to target and kill cancer cells with precision have inspired the development of immunotherapy. Miniaturized antibody fragments such as diabodies, nanobodies, or single-chain variable fragments (scFvs) hold great promise as antibody-drug conjugates as they specifically target tumor tissue and can penetrate it. Here, we optimized the soluble periplasmic expression of the scFv OKT3 comprising the variable VH and VL domains of the mouse anti-human CD3 antibody muromonab-CD3 (trade name Orthoclone OKT3) in E. coli. By an expansion of the genetic code, we site-specifically incorporated the reactive non-canonical amino acid Nε-((2-azidoethoxy)carbonyl)-L-lysine (AzK) into scFv OKT3 using an orthogonal pyrrolysyl-tRNA synthetase/tRNACUA pair. To confirm the AzK incorporation and to demonstrate the accessibility of the reactive azide group, we conjugated a fluorophore to scFv OKT3 AzK variants by copper-free strain-promoted alkyne-azide cycloaddition ('click chemistry'). The scFv OKT3 wild type and the AzK variants bound T cells at nanomolar concentrations. In this study, a 'ready-to-click' scFv OKT3 was successfully developed for future applications, e.g. as controlled anti-T cell antibody-drug conjugate or bispecific T cell engager and for imaging immune T cell migration in cancers.


Subject(s)
Immunoconjugates , Neoplasms , Animals , Mice , Muromonab-CD3/genetics , Muromonab-CD3/therapeutic use , Escherichia coli/genetics , Azides/therapeutic use , Receptors, Antigen, T-Cell , Neoplasms/drug therapy , Genetic Code , Immunoconjugates/genetics , Immunoconjugates/therapeutic use
5.
J Clin Invest ; 133(11)2023 06 01.
Article in English | MEDLINE | ID: mdl-37014703

ABSTRACT

Current therapies for Fabry disease are based on reversing intracellular accumulation of globotriaosylceramide (Gb3) by enzyme replacement therapy (ERT) or chaperone-mediated stabilization of the defective enzyme, thereby alleviating lysosomal dysfunction. However, their effect in the reversal of end-organ damage, like kidney injury and chronic kidney disease, remains unclear. In this study, ultrastructural analysis of serial human kidney biopsies showed that long-term use of ERT reduced Gb3 accumulation in podocytes but did not reverse podocyte injury. Then, a CRISPR/Cas9-mediated α-galactosidase knockout podocyte cell line confirmed ERT-mediated reversal of Gb3 accumulation without resolution of lysosomal dysfunction. Transcriptome-based connectivity mapping and SILAC-based quantitative proteomics identified α-synuclein (SNCA) accumulation as a key event mediating podocyte injury. Genetic and pharmacological inhibition of SNCA improved lysosomal structure and function in Fabry podocytes, exceeding the benefits of ERT. Together, this work reconceptualizes Fabry-associated cell injury beyond Gb3 accumulation, and introduces SNCA modulation as a potential intervention, especially for patients with Fabry nephropathy.


Subject(s)
Fabry Disease , Podocytes , Humans , Podocytes/pathology , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Fabry Disease/genetics , Fabry Disease/drug therapy , Fabry Disease/pathology , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism , alpha-Galactosidase/therapeutic use , Kidney/metabolism , Trihexosylceramides/metabolism , Trihexosylceramides/pharmacology , Trihexosylceramides/therapeutic use
6.
EMBO Rep ; 24(4): e55971, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36856136

ABSTRACT

Pseudomonas aeruginosa is a Gram-negative bacterium causing morbidity and mortality in immuno-compromised humans. It produces a lectin, LecB, that is considered a major virulence factor, however, its impact on the immune system remains incompletely understood. Here we show that LecB binds to endothelial cells in human skin and mice and disrupts the transendothelial passage of leukocytes in vitro. It impairs the migration of dendritic cells into the paracortex of lymph nodes leading to a reduced antigen-specific T cell response. Under the effect of the lectin, endothelial cells undergo profound cellular changes resulting in endocytosis and degradation of the junctional protein VE-cadherin, formation of an actin rim, and arrested cell motility. This likely negatively impacts the capacity of endothelial cells to respond to extracellular stimuli and to generate the intercellular gaps for allowing leukocyte diapedesis. A LecB inhibitor can restore dendritic cell migration and T cell activation, underlining the importance of LecB antagonism to reactivate the immune response against P. aeruginosa infection.


Subject(s)
Pseudomonas aeruginosa , Transendothelial and Transepithelial Migration , Humans , Animals , Mice , Endothelial Cells/metabolism , Lectins/metabolism , Lectins/pharmacology , Immunity
7.
Biomolecules ; 13(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36830704

ABSTRACT

The present report assesses the capability of a soluble glycosyltransferase to modify glycolipids organized in two synthetic membrane systems that are attractive models to mimic cell membranes: giant unilamellar vesicles (GUVs) and supported lipid bilayers (SLBs). The objective was to synthesize the Gb3 antigen (Galα1,4Galß1,4Glcß-Cer), a cancer biomarker, at the surface of these membrane models. A soluble form of LgtC that adds a galactose residue from UDP-Gal to lactose-containing acceptors was selected. Although less efficient than with lactose, the ability of LgtC to utilize lactosyl-ceramide as an acceptor was demonstrated on GUVs and SLBs. The reaction was monitored using the B-subunit of Shiga toxin as Gb3-binding lectin. Quartz crystal microbalance with dissipation analysis showed that transient binding of LgtC at the membrane surface was sufficient for a productive conversion of LacCer to Gb3. Molecular dynamics simulations provided structural elements to help rationalize experimental data.


Subject(s)
Glycolipids , Lactose , Lactose/metabolism , Glycolipids/metabolism , Lipid Bilayers/chemistry , Cell Membrane/metabolism , Unilamellar Liposomes/chemistry
8.
Nat Commun ; 14(1): 323, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36658193

ABSTRACT

In plants, the topological organization of membranes has mainly been attributed to the cell wall and the cytoskeleton. Additionally, few proteins, such as plant-specific remorins have been shown to function as protein and lipid organizers. Root nodule symbiosis requires continuous membrane re-arrangements, with bacteria being finally released from infection threads into membrane-confined symbiosomes. We found that mutations in the symbiosis-specific SYMREM1 gene result in highly disorganized perimicrobial membranes. AlphaFold modelling and biochemical analyses reveal that SYMREM1 oligomerizes into antiparallel dimers and may form a higher-order membrane scaffolding structure. This was experimentally confirmed when expressing this and other remorins in wall-less protoplasts is sufficient where they significantly alter and stabilize de novo membrane topologies ranging from membrane blebs to long membrane tubes with a central actin filament. Reciprocally, mechanically induced membrane indentations were equally stabilized by SYMREM1. Taken together we describe a plant-specific mechanism that allows the stabilization of large-scale membrane conformations independent of the cell wall.


Subject(s)
Carrier Proteins , Phosphoproteins , Carrier Proteins/metabolism , Phosphoproteins/metabolism , Plant Proteins/metabolism , Plants/metabolism , Symbiosis
9.
Nat Commun ; 14(1): 65, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36599837

ABSTRACT

Phagocytic particle uptake is crucial for the fate of both living cells and pathogens. Invading particles have to overcome fluctuating lipid membranes as the first physical barrier. However, the energy and the role of the fluctuation-based particle-membrane interactions during particle uptake are not understood. We tackle this problem by indenting the membrane of differently composed Giant Unilamellar Vesicles (GUVs) with optically trapped particles until particle uptake. By continuous 1 MHz tracking and autocorrelating the particle's positions within 30µs delays for different indentations, the fluctuations' amplitude, the damping, the mean forces, and the energy profiles were obtained. Remarkably, the uptake energy into a GUV becomes predictable since it increases for smaller fluctuation amplitudes and longer relaxation time. Our observations could be explained by a mathematical model based on continuous suppression of fluctuation modes. Hence, the reduced particle uptake energy for protein-ligand interactions LecA-Gb3 or Biotin-Streptavidin results also from pronounced, low-friction membrane fluctuations.


Subject(s)
Models, Theoretical , Unilamellar Liposomes , Biological Transport , Phagocytosis , Lipids
10.
Pharmaceutics ; 15(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36678854

ABSTRACT

Receptor-mediated transcytosis is an elegant and promising strategy for drug delivery across biological barriers. Here, we describe a novel ligand-receptor pair based on a dimeric, engineered derivative of the Pseudomonas aeruginosa lectin LecA, here termed Di-LecA, and the host cell glycosphingolipid Gb3. We characterized the trafficking kinetics and transcytosis efficiencies in polarized Gb3-positive and -negative MDCK cells using mainly immunofluorescence in combination with confocal microscopy. To evaluate the delivery capacity of dimeric LecA chimeras, EGFP was chosen as a fluorescent model protein representing macromolecules, such as antibody fragments, and fused to either the N- or C-terminus of monomeric LecA using recombinant DNA technology. Both LecA/EGFP fusion proteins crossed cellular monolayers in vitro. Of note, the conjugate with EGFP at the N-terminus of LecA (EGFP-LecA) showed a higher release rate than the conjugate with EGFP at the C-terminus (LecA-EGFP). Based on molecular dynamics simulations and cross-linking studies of giant unilamellar vesicles, we speculate that EGFP-LecA tends to be a dimer while LecA-EGFP forms a tetramer. Overall, we confidently propose the dimeric LecA chimeras as transcytotic drug delivery tools through Gb3-positive cellular barriers for future in vivo tests.

11.
Angew Chem Int Ed Engl ; 62(7): e202215535, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36398566

ABSTRACT

Bacterial adhesion, biofilm formation and host cell invasion of the ESKAPE pathogen Pseudomonas aeruginosa require the tetravalent lectins LecA and LecB, which are therefore drug targets to fight these infections. Recently, we have reported highly potent divalent galactosides as specific LecA inhibitors. However, they suffered from very low solubility and an intrinsic chemical instability due to two acylhydrazone motifs, which precluded further biological evaluation. Here, we isosterically substituted the acylhydrazones and systematically varied linker identity and length between the two galactosides necessary for LecA binding. The optimized divalent LecA ligands showed improved stability and were up to 1000-fold more soluble. Importantly, these properties now enabled their biological characterization. The lead compound L2 potently inhibited LecA binding to lung epithelial cells, restored wound closure in a scratch assay and reduced the invasiveness of P. aeruginosa into host cells.


Subject(s)
Adhesins, Bacterial , Pseudomonas aeruginosa , Humans , Adhesins, Bacterial/chemistry , Pseudomonas aeruginosa/metabolism , Virulence Factors/metabolism , Galactosides/chemistry , Galactosides/metabolism , Galactosides/pharmacology , Bacterial Adhesion
12.
J Transl Med ; 20(1): 578, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36494671

ABSTRACT

BACKGROUND: Aberrant glycosylation patterns play a crucial role in the development of cancer cells as they promote tumor growth and aggressiveness. Lectins recognize carbohydrate antigens attached to proteins and lipids on cell surfaces and represent potential tools for application in cancer diagnostics and therapy. Among the emerging cancer therapies, immunotherapy has become a promising treatment modality for various hematological and solid malignancies. Here we present an approach to redirect the immune system into fighting cancer by targeting altered glycans at the surface of malignant cells. We developed a so-called "lectibody", a bispecific construct composed of a lectin linked to an antibody fragment. This lectibody is inspired by bispecific T cell engager (BiTEs) antibodies that recruit cytotoxic T lymphocytes (CTLs) while simultaneously binding to tumor-associated antigens (TAAs) on cancer cells. The tumor-related glycosphingolipid globotriaosylceramide (Gb3) represents the target of this proof-of-concept study. It is recognized with high selectivity by the B-subunit of the pathogen-derived Shiga toxin, presenting opportunities for clinical development. METHODS: The lectibody was realized by conjugating an anti-CD3 single-chain antibody fragment to the B-subunit of Shiga toxin to target Gb3+ cancer cells. The reactive non-canonical amino acid azidolysine (AzK) was inserted at predefined single positions in both proteins. The azido groups were functionalized by bioorthogonal conjugation with individual linkers that facilitated selective coupling via an alternative bioorthogonal click chemistry reaction. In vitro cell-based assays were conducted to evaluate the antitumoral activity of the lectibody. CTLs, Burkitt´s lymphoma-derived cells and colorectal adenocarcinoma cell lines were screened in flow cytometry and cytotoxicity assays for activation and lysis, respectively. RESULTS: This proof-of-concept study demonstrates that the lectibody activates T cells for their cytotoxic signaling, redirecting CTLs´ cytotoxicity in a highly selective manner and resulting in nearly complete tumor cell lysis-up to 93%-of Gb3+ tumor cells in vitro. CONCLUSIONS: This research highlights the potential of lectins in targeting certain tumors, with an opportunity for new cancer treatments. When considering a combinatorial strategy, lectin-based platforms of this type offer the possibility to target glycan epitopes on tumor cells and boost the efficacy of current therapies, providing an additional strategy for tumor eradication and improving patient outcomes.


Subject(s)
Antibodies, Bispecific , Neoplasms , Humans , T-Lymphocytes, Cytotoxic , CD3 Complex/metabolism , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/chemistry , Lymphocyte Activation , Shiga Toxin , Immunoglobulin Fragments , Cell Death , Lectins
13.
ACS Synth Biol ; 11(12): 3929-3938, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36367814

ABSTRACT

Membrane fusion is essential for the transport of macromolecules and viruses across membranes. While glycan-binding proteins (lectins) often initiate cellular adhesion, subsequent fusion events require additional protein machinery. No mechanism for membrane fusion arising from simply a protein binding to membrane glycolipids has been described thus far. Herein, we report that a biotinylated protein derived from cholera toxin becomes a fusogenic lectin upon cross-linking with streptavidin. This novel reengineered protein brings about hemifusion and fusion of vesicles as demonstrated by mixing of fluorescently labeled lipids between vesicles as well as content mixing of liposomes filled with fluorescently labeled dextran. Exclusion of the complex at vesicle-vesicle interfaces could also be observed, indicating the formation of hemifusion diaphragms. Discovery of this fusogenic lectin complex demonstrates that new emergent properties can arise from simple changes in protein architecture and provides insights into new mechanisms of lipid-driven fusion.


Subject(s)
Cholera Toxin , Membrane Fusion , Glycolipids , Liposomes/chemistry , Lectins
14.
Comput Struct Biotechnol J ; 20: 6108-6119, 2022.
Article in English | MEDLINE | ID: mdl-36420169

ABSTRACT

Synthetic biology is a rapidly growing field with applications in biotechnology and biomedicine. Through various approaches, remarkable achievements, such as cell and tissue engineering, have been already accomplished. In synthetic glycobiology, the engineering of glycan binding proteins is being exploited for producing tools with precise topology and specificity. We developed the concept of engineered chimeric lectins, i.e., Janus lectin, with increased valency, and additional specificity. The novel engineered lectin, assembled as a fusion protein between the ß-propeller domain from Ralstonia solanacearum and the ß-trefoil domain from fungus Marasmius oreades, is specific for fucose and α-galactose and its unique protein architecture allows to bind these ligands simultaneously. The protein activity was tested with glycosylated giant unilamellar vesicles, resulting in the formation of proto-tissue-like structures through cross-linking of such protocells. The engineered protein recognizes and binds H1299 human lung epithelial cancer cells by its two domains. The biophysical properties of this new construct were compared with the two already existing Janus lectins, RSL-CBM40 and RSL-CBM77Rf. Denaturation profiles of the proteins indicate that the fold of each has a significant role in protein stability and should be considered during protein engineering.

15.
Cell Rep ; 41(3): 111510, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36261008

ABSTRACT

Septin GTPases polymerize into higher-ordered structures as a part of the cytoskeleton and are involved in interactions of the host with a wide spectrum of pathogens. Many pathogens foster an ambiguous relationship with septins. They exploit septins for uptake, but septins also prevent their intracellular replication and target them for autophagy. We demonstrate that septins are involved in a defense mechanism against the pathogen Pseudomonas aeruginosa, which enters cells via a lipid zippering mechanism relying on interaction of the lectin LecA with the glycosphingolipid Gb3 on the host membrane. LecA-dependent invagination of the plasma membrane triggers septin recruitment to the site of bacterial attachment. We also find a septin-dependent reinforcement of cortical actin at attachment sites. Atomic force microscopy reveals formation of a septin-dependent rigid barrier below the membrane, preventing bacterial penetration. Our data suggest that septin barriers represent a cellular defense against bacteria inducing membrane curvature for invasion.


Subject(s)
Pseudomonas aeruginosa , Septins , Animals , Septins/metabolism , Pseudomonas aeruginosa/metabolism , Actins/metabolism , Glycosphingolipids/metabolism , Lectins/metabolism , Mammals/metabolism
16.
Commun Biol ; 5(1): 954, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36097056

ABSTRACT

Choanoflagellates are primitive protozoa used as models for animal evolution. They express a large variety of multi-domain proteins contributing to adhesion and cell communication, thereby providing a rich repertoire of molecules for biotechnology. Adhesion often involves proteins adopting a ß-trefoil fold with carbohydrate-binding properties therefore classified as lectins. Sequence database screening with a dedicated method resulted in TrefLec, a database of 44714 ß-trefoil candidate lectins across 4497 species. TrefLec was searched for original domain combinations, which led to single out SaroL-1 in the choanoflagellate Salpingoeca rosetta, that contains both ß-trefoil and aerolysin-like pore-forming domains. Recombinant SaroL-1 is shown to bind galactose and derivatives, with a stronger affinity for cancer-related α-galactosylated epitopes such as the glycosphingolipid Gb3, when embedded in giant unilamellar vesicles or cell membranes. Crystal structures of complexes with Gb3 trisaccharide and GalNAc provided the basis for building a model of the oligomeric pore. Finally, recognition of the αGal epitope on glycolipids required for hemolysis of rabbit erythrocytes suggests that toxicity on cancer cells is achieved through carbohydrate-dependent pore-formation.


Subject(s)
Choanoflagellata , Neoplasms , Animals , Carbohydrates/chemistry , Choanoflagellata/metabolism , Glycosphingolipids , Lectins/chemistry , Neoplasms/drug therapy , Rabbits
17.
Cell Mol Life Sci ; 79(10): 513, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36097202

ABSTRACT

The link between cancer and aberrant glycosylation has recently become evident. Glycans and their altered forms, known as tumour-associated carbohydrate antigens (TACAs), are diverse, complex and difficult to target therapeutically. Lectins are naturally occurring glycan-binding proteins  that offer a unique opportunity to recognise TACAs. T cells expressing chimeric antigen receptors (CARs) have proven to be a successful immunotherapy against leukaemias, but so far have shown limited success in solid tumours. We developed a panel of lectin-CARs that recognise the glycosphingolipid globotriaosylceramide (Gb3), which is overexpressed in various cancers, such as Burkitt's lymphoma, colorectal, breast and pancreatic. We have selected the following lectins: Shiga toxin's B-subunit from Shigella dysenteriae, LecA from Pseudomonas aeruginosa, and the engineered lectin Mitsuba from Mytilus galloprovincialis as antigen-binding domains and fused them to a well-known second-generation CAR. The Gb3-binding lectin-CARs have demonstrated target-specific cytotoxicity against Burkitt's lymphoma-derived cell lines as well as solid tumour cells from colorectal and triple-negative breast cancer. Our findings reveal the big potential of lectin-based CARs as therapeutical applications to target Gb3 and other TACAs expressed in haematological malignancies and solid tumours.


Subject(s)
Burkitt Lymphoma , Colorectal Neoplasms , Receptors, Chimeric Antigen , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/therapy , Humans , Lectins/metabolism , Polysaccharides/metabolism , T-Lymphocytes
18.
Mol Biol Cell ; 33(13): ar116, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36044337

ABSTRACT

The MARVEL proteins CMTM4 and CMTM6 control PD-L1, thereby influencing tumor immunity. We found that defective zebrafish cmtm4 slowed the development of the posterior lateral line (pLL) by altering the Cxcr4b gradient across the pLL primordium (pLLP). Analysis in mammalian cells uncovered that CMTM4 interacted with CXCR4, altering its glycosylation pattern, but did not affect internalization or degradation of CXCR4 in the absence of its ligand CXCL12. Synchronized release of CXCR4 from the endoplasmic reticulum revealed that CMTM4 slowed CXCR4 trafficking from the endoplasmic reticulum to the plasma membrane without affecting overall cell surface expression. Altered CXCR4 trafficking reduced ligand-induced CXCR4 degradation and affected AKT but not ERK1/2 activation. CMTM4 expression, in contrast to that of CXCR4, correlated with the survival of patients with renal cell cancer in the TCGA cohort. Furthermore, we observed that cmtm4 depletion promotes the separation of cells from the pLLP cell cluster in zebrafish embryos. Collectively, our findings indicate that CMTM4 exerts general roles in the biosynthetic pathway of cell surface molecules and seems to affect CXCR4-dependent cell migration.


Subject(s)
B7-H1 Antigen , Zebrafish , Animals , B7-H1 Antigen/metabolism , Chemokine CXCL12/metabolism , Ligands , MARVEL Domain-Containing Proteins/metabolism , Mammals/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, CXCR4/metabolism , Signal Transduction , Zebrafish/metabolism
19.
Toxins (Basel) ; 14(6)2022 06 08.
Article in English | MEDLINE | ID: mdl-35737057

ABSTRACT

Non-toxic derivatives of the cholera toxin are extensively used in neuroscience, as neuronal tracers to reveal the location of cells in the central nervous system. They are, also, being developed as vaccine components and drug-delivery vehicles. Production of cholera-toxin derivatives is often non-reproducible; the quality and quantity require extensive fine-tuning to produce them in lab-scale settings. In our studies, we seek a resolution to this problem, by expanding the molecular toolbox of the Escherichia coli expression system with suitable production, purification, and offline analytics, to critically assess the quality of a probe or drug delivery, based on a non-toxic derivative of the cholera toxin. We present a re-engineered Cholera Toxin Complex (rCTC), wherein its toxic A1 domain was replaced with Maltose Binding Protein (MBP), as a model for an rCTC-based targeted-delivery vehicle. Here, we were able to improve the rCTC production by 11-fold (168 mg/L vs. 15 mg/L), in comparison to a host/vector combination that has been previously used (BL21(DE3) pTRBAB5-G1S). This 11-fold increase in the rCTC production capability was achieved by (1) substantial vector backbone modifications, (2) using Escherichia coli strains capable of growth-decoupling (V strains), (3) implementing a well-tuned fed-batch production protocol at a 1 L scale, and (4) testing the stability of the purified product. By an in-depth characterization of the production process, we revealed that secretion of rCTC across the E. coli Outer Membrane (OM) is processed by the Type II secretion-system general secretory pathway (gsp-operon) and that cholera toxin B-pentamerization is, likely, the rate-limiting step in complex formation. Upon successful manufacturing, we have validated the biological activity of rCTC, by measuring its binding affinity to its carbohydrate receptor GM1 oligosaccharide (Kd = 40 nM), or binding to Jurkat cells (93 pM) and delivering the cargo (MBP) in a retrograde fashion to the cell.


Subject(s)
Cholera Toxin , Cholera Toxin/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Humans
20.
mBio ; 13(3): e0081922, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35491830

ABSTRACT

The opportunistic bacterium Pseudomonas aeruginosa can infect mucosal tissues of the human body. To persist at the mucosal barrier, this highly adaptable pathogen has evolved many strategies, including invasion of host cells. Here, we show that the P. aeruginosa lectin LecB binds and cross-links fucosylated receptors at the apical plasma membrane of epithelial cells. This triggers a signaling cascade via Src kinases and phosphoinositide 3-kinase (PI3K), leading to the formation of patches enriched with the basolateral marker phosphatidylinositol (3,4,5)-trisphosphate (PIP3) at the apical plasma membrane. This identifies LecB as a causative bacterial factor for activating this well-known host cell response that is elicited upon apical binding of P. aeruginosa. Downstream from PI3K, Rac1 is activated to cause actin rearrangement and the outgrowth of protrusions at the apical plasma membrane. LecB-triggered PI3K activation also results in aberrant recruitment of caveolin-1 to the apical domain. In addition, we reveal a positive feedback loop between PI3K activation and apical caveolin-1 recruitment, which provides a mechanistic explanation for the previously observed implication of caveolin-1 in P. aeruginosa host cell invasion. Interestingly, LecB treatment also reversibly removes primary cilia. To directly prove the role of LecB for bacterial uptake, we coated bacterium-sized beads with LecB, which drastically enhanced their endocytosis. Furthermore, LecB deletion and LecB inhibition with l-fucose diminished the invasion efficiency of P. aeruginosa bacteria. Taken together, the results of our study identify LecB as a missing link that can explain how PI3K signaling and caveolin-1 recruitment are triggered to facilitate invasion of epithelial cells from the apical side by P. aeruginosa. IMPORTANCE An intriguing feature of the bacterium P. aeruginosa is its ability to colonize highly diverse niches. P. aeruginosa can, besides forming biofilms, also enter and proliferate within epithelial host cells. Moreover, research during recent years has shown that P. aeruginosa possesses many different mechanisms to invade host cells. In this study, we identify LecB as a novel invasion factor. In particular, we show that LecB activates PI3K signaling, which is connected via a positive feedback loop to apical caveolin-1 recruitment and leads to actin rearrangement at the apical plasma membrane. This provides a unifying explanation for the previously reported implication of PI3K and caveolin-1 in host cell invasion by P. aeruginosa. In addition, our study adds a further function to the remarkable repertoire of the lectin LecB, which is all brought about by the capability of LecB to recognize fucosylated glycans on many different niche-specific host cell receptors.


Subject(s)
Lectins , Pseudomonas aeruginosa , Actins/metabolism , Caveolin 1/metabolism , Cell Membrane/metabolism , Humans , Lectins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pseudomonas aeruginosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...