Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Molecules ; 28(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36677823

ABSTRACT

Coatings of metal specimens are known to have an impact on hydrogen gettering (hydrogen absorption). The coating can have one or more functions, such as enhancing gettering, preventing gettering and/or preventing oxidation of the metal substrate. It is known that contaminants and surface texture can impact hydrogen gettering/absorption performance, but has not previously been thoroughly explored. This study evaluated the role of different post-plating heat treatments of nickel-plated zircaloy-4 getters (NPGs) and the role of the heat treatments on gettering rates, surface composition and texture. Nickel plating is applied to prevent oxidation of the Zircaloy-4 surface and also enhances gettering. The nickel plating must be heat treated before desirable gettering can occur. Our NPG getters with historically known satisfying performance were pre-heat treated in air followed by activation heat treatment in a vacuum at a higher temperature. In this study, we were interested in finding out if both heat treatment steps were necessary to obtain a desirable gettering performance, or if one step could be omitted. XPS analysis showed that if the nickel surface is not heat treated before bonding the nickel to the zirconium in the activation step, there will be carbon contaminants on the surface, which significantly reduces gettering. We studied the texture of Zircaloy-4 using SEM/EBSD to compare NPGs with both heat treatment steps with NPGs that had no post-plating heat treatment to learn if the degree of cold work could be impacted by the heat treatment steps. We did not observe any differences in texture between them. We measured gettering rates of both pretreated and activated NPGs and NPGs that had been activated without first being pre-heat treated. We found that the NPGs without the first post-plating heating step had up to a seven times slower gettering rate and obtained higher plateau pressures due to the contaminated surface. Thus, the pre-heat treatment in air before activation is necessary to avoid slower gettering rates and higher plateau pressures.


Subject(s)
Galactosylceramides , Nickel , Nickel/chemistry , Hot Temperature , Cold Temperature
2.
Molecules ; 27(19)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36235066

ABSTRACT

The hydrogen infrastructure involves hydrogen production, storage and delivery for utilization with clean energy applications. Hydrogen ingress into structural materials can be detrimental due to corrosion and embrittlement. To enable safe operation in applications that need protection from hydrogen isotopes, this review article summarizes most recent advances in materials design and performance characterization of barrier coatings to prevent hydrogen isotopes' absorption ingress and permeation. Barriers are crucial to prevent hydride formation and unwanted hydrogen effects to increase safety, materials' lifetime and reduce cost for applications within nuclear and renewable energy. The coating may be applied on a material that requires protection from hydrogen pick-up, transport and hydride formation in hydrogen storage containers, in pipelines, spent nuclear fuel storage or in nuclear reactors. While existing, commercial coatings that have been much in use may be satisfactory for various applications, it is desirable to evaluate whether alternative coating concepts can provide a greater resistance to hydrogen isotope permeation along with other improved properties, such as mechanical strength and thermal resistance. The information presented here is focusing on recent findings within the past 5-7 years of promising hydrogen barriers including oxides, nitrides, carbon, carbide, MAX-phases and metals and their mechanical strength, hydrogen pick-up, radiation resistance and coating manufacturing techniques. A brief introduction to hydrogen permeation is provided. Knowledge gaps were identified to provide guidance for material's research prospects.

3.
Molecules ; 26(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808765

ABSTRACT

We present the research findings of the DOE-funded Hydrogen Storage Engineering Center of Excellence (HSECoE) related to liquid-phase and slurry-phase chemical hydrogen storage media and their potential as future hydrogen storage media for automotive applications. Chemical hydrogen storage media other than neat liquid compositions will prove difficult to meet the DOE system level targets. Solid- and slurry-phase chemical hydrogen storage media requiring off-board regeneration are impractical and highly unlikely to be implemented for automotive applications because of the formidable task of developing solid- or slurry-phase transport systems that are commercially reliable and economical throughout the entire life cycle of the fuel. Additionally, the regeneration cost and efficiency of chemical hydrogen storage media is currently the single most prohibitive barrier to implementing chemical hydrogen storage media. Ideally, neat liquid-phase chemical hydrogen storage media with net-usable gravimetric hydrogen capacities of greater than 7.8 wt% are projected to meet the 2017 DOE system level gravimetric and volumetric targets. The research presented herein is a collection of research findings that do not in and of themselves warrant a dedicated manuscript. However, the collection of results do, in fact, highlight the engineering challenges and short-comings in scaling up and demonstrating fluid-phase ammonia borane and alane compositions that all future materials researchers working in hydrogen storage should be aware of.

4.
Phys Chem Chem Phys ; 16(17): 7959-68, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24647627

ABSTRACT

Ammonia borane (AB), NH3BH3, is a promising material for chemical hydrogen storage with 19.6 wt% gravimetric hydrogen capacity of which maximum 16.2 wt% hydrogen can be released via an exothermic thermal decomposition below 200 °C. We have investigated the kinetics of hydrogen release from AB and from an AB-methyl cellulose (AB/MC) composite at temperatures of 160-300 °C using both experiments and modeling. The hydrogen release rate at 300 °C is twice as fast as at 160 °C. The purpose of our study was to show safe hydrogen release without thermal runaway effects and to validate system model kinetics. AB/MC released hydrogen at ∼20 °C lower than neat AB and at a faster release rate in that temperature range. Based on the experimental results, the kinetics equations were revised to better represent the growth and nucleation process during decomposition of AB. We explored two different reactor concepts; auger and fixed bed. The current auger reactor concept turned out to not be appropriate, however, we demonstrated safe self-propagation of the hydrogen release reaction of solid AB/MC in a fixed bed reactor.

5.
J Am Chem Soc ; 134(34): 13926-9, 2012 Aug 29.
Article in English | MEDLINE | ID: mdl-22888976

ABSTRACT

Ultrafine Pt nanoparticles were successfully immobilized inside the pores of a metal-organic framework, MIL-101, without aggregation of Pt nanoparticles on the external surfaces of framework by using a "double solvents" method. TEM and electron tomographic measurements clearly demonstrated the uniform three-dimensional distribution of the ultrafine Pt NPs throughout the interior cavities of MIL-101. The resulting Pt@MIL-101 composites represent the first highly active MOF-immobilized metal nanocatalysts for catalytic reactions in all three phases: liquid-phase ammonia borane hydrolysis, solid-phase ammonia borane thermal dehydrogenation, and gas-phase CO oxidation.

6.
J Am Chem Soc ; 132(19): 6616-7, 2010 May 19.
Article in English | MEDLINE | ID: mdl-20423100

ABSTRACT

Magnesium and magnesium-based alloys are considered attractive candidates as rechargeable hydrogen storage materials because of their high hydrogen storage capacities (theoretically up to 7.6 wt %), reversibility, and low cost. In this work, the hydrogenation of nanocrystalline magnesium at room temperature in the presence of TiH(2) was studied. The magnesium was derived by dehydrogenation of nanostructured MgH(2)-0.1TiH(2) prepared by using an ultra-high-energy and high-pressure planetary milling technique. Significant uptake of hydrogen by magnesium at room temperature was observed. The results demonstrate that the nanostructured MgH(2)-0.1TiH(2) system is superior to undoped nano- or micrometer-scaled MgH(2) with respect to the hydrogenation properties of magnesium at room temperature. This finding is potentially useful for a range of energy applications including mobile or stationary hydrogen fuel cells, cooling medium in electricity generation, and differential pressure compressors.

7.
Chem Commun (Camb) ; 46(3): 421-3, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-20066312

ABSTRACT

Conditions have been found whereby it is possible to reversibly store >11 wt% hydrogen through the direct hydrogenation of MgB(2) to Mg(BH(4))(2).

8.
J Am Chem Soc ; 131(43): 15843-52, 2009 Nov 04.
Article in English | MEDLINE | ID: mdl-19810732

ABSTRACT

Magnesium hydride (MgH(2)) is an attractive candidate for solid-state hydrogen storage applications. To improve the kinetics and thermodynamic properties of MgH(2) during dehydrogenation-rehydrogenation cycles, a nanostructured MgH(2)-0.1TiH(2) material system prepared by ultrahigh-energy-high-pressure mechanical milling was investigated. High-resolution transmission electron microscope (TEM) and scanning TEM analysis showed that the grain size of the milled MgH(2)-0.1TiH(2) powder is approximately 5-10 nm with uniform distributions of TiH(2) among MgH(2) particles. Pressure-composition-temperature (PCT) analysis demonstrated that both the nanosize and the addition of TiH(2) contributed to the significant improvement of the kinetics of dehydrogenation and hydrogenation compared to commercial MgH(2). More importantly, PCT cycle analysis demonstrated that the MgH(2)-0.1TiH(2) material system showed excellent cycle stability. The results also showed that the DeltaH value for the dehydrogenation of nanostructured MgH(2)-0.1TiH(2) is significantly lower than that of commercial MgH(2). However, the DeltaS value of the reaction was also lower, which results in minimum net effects of the nanosize and the addition of TiH(2) on the equilibrium pressure of dehydrogenation reaction of MgH(2).

9.
J Phys Chem B ; 111(42): 12045-7, 2007 Oct 25.
Article in English | MEDLINE | ID: mdl-17914804

ABSTRACT

We demonstrate a new solid-state synthesis route to prepare calcium borohydride, Ca(BH4)2, by reacting a ball-milled mixture of CaB(6) and CaH(2) in a molar ratio of 1:2 at 700 bar of H2 pressure and 400-440 degrees C. Moreover, doping with catalysts was found to be crucial to enhance reaction kinetics. Thermogravimetric analysis and differential scanning calorimetry revealed a reversible low-temperature to high-temperature endothermic phase transition at 140 degrees C and another endothermic phase transition at 350-390 degrees C associated with hydrogen release upon formation of CaB(6) and CaH(2), as was evident from X-ray diffraction analysis. Thus, since Ca(BH(4))(2) here is shown to be prepared from its anticipated decomposition products, the conclusion is that it has potential to be utilized as a reversible hydrogen storage material. The theoretical reversible capacity was 9.6 wt % hydrogen.

10.
J Phys Chem B ; 110(51): 25686-91, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17181207

ABSTRACT

A new bialkali alanate K2LiAlH6 was synthesized at 320-330 degrees C and 100-700 bar. It was structurally characterized by powder X-ray diffraction. It crystallizes in space group R3m (No. 166) with unit cell parameters a = 5.62068(8) and c = 27.3986(6) A. The Li and K cation sites are mutually exclusive, and Rietveld refinement finds no cation mixing. First-principles total energy calculations were performed for nine competing database structures of the stoichiometry A2BCX6, taken from fluoride and oxide compounds in the Inorganic Crystal Structure Database (ICSD). The relaxed structures were compared via their total energies and their agreement with experimental diffraction spectra. Two database structures K2LiAlF6 (R3m) and Cs2NaAlF6 (C2/m) were found to have the lowest total energies, but with the Rietveld method the K2LiAlF6 structure type was shown to be the most favorable. Ab initio total energy calculations support the validity of the structure determination. First-principles calculations also indicate that cation mixing is energetically unfavorable. Hydride properties such as plateau pressure are therefore more difficult to manipulate through alloying in this class of compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...