Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 102(23): 10245-10257, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30215127

ABSTRACT

Biodegradation of poly(cis-1,4-isoprene) (rubber) by Gram-negative bacteria has been investigated on the enzymatic level only in Steroidobacter cummioxidans 35Y (previously Xanthomonas sp. 35Y). This species produces two kinds of rubber oxygenases, RoxA35Y and RoxB35Y, one of which (RoxB35Y) cleaves polyisoprene to a mixture of C20- and higher oligoisoprenoids while the other (RoxA35Y) cleaves polyisoprene and RoxB35Y-derived oligoisoprenoids to the C15-oligoisoprenoid 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD). ODTD can be taken up by S. cummioxidans and used as a carbon source. Gram-positive rubber-degrading bacteria employ another type of rubber oxygenase, latex clearing protein (Lcp), for the initial oxidative attack of the polyisoprene molecule. In this contribution, we examined which type of rubber oxygenase is present in the only other well-documented Gram-negative rubber-degrading species, Rhizobacter gummiphilus NS21. No homologue for an Lcp protein but homologues for a putative RoxA and a RoxB protein (the latter identical to a previously postulated LatA-denominated rubber cleaving enzyme) were identified in the genome of strain NS21. The roxANS21 and roxBNS21 genes were separately expressed in a ∆roxA35Y/∆roxB35Y background of S. cummioxidans 35Y and restored the ability of the mutant to produce oligoisoprenoids. The RoxANS21 and RoxBNS21 proteins were each purified and biochemically characterised. The results-in combination with in silico analysis of databases-indicate that Gram-negative rubber-degrading bacteria generally utilise two synergistically acting rubber oxygenases (RoxA/RoxB) for efficient cleavage of polyisoprene to ODTD.


Subject(s)
Bacterial Proteins/genetics , Burkholderiales/enzymology , Burkholderiales/genetics , Oxygenases/genetics , Rubber/metabolism , Bacterial Proteins/metabolism , Biodegradation, Environmental , Cloning, Molecular , DNA, Bacterial/genetics , Genome, Bacterial , Oxygenases/metabolism
2.
Sci Rep ; 7(1): 6179, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28733658

ABSTRACT

Latex clearing proteins (Lcps) are rubber oxygenases that catalyse the extracellular cleavage of poly (cis-1,4-isoprene) by Gram-positive rubber degrading bacteria. Lcp of Streptomyces sp. K30 (LcpK30) is a b-type cytochrome and acts as an endo-type dioxygenase producing C20 and higher oligo-isoprenoids that differ in the number of isoprene units but have the same terminal functions, CHO-CH2- and -CH2-COCH3. Our analysis of the LcpK30 structure revealed a 3/3 globin fold with additional domains at the N- and C-termini and similarities to globin-coupled sensor proteins. The haem group of LcpK30 is ligated to the polypeptide by a proximal histidine (His198) and by a lysine residue (Lys167) as the distal axial ligand. The comparison of LcpK30 structures in a closed and in an open state as well as spectroscopic and biochemical analysis of wild type and LcpK30 muteins provided insights into the action of the enzyme during catalysis.


Subject(s)
Oxygenases/chemistry , Oxygenases/metabolism , Rubber/chemistry , Streptomyces/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Biodegradation, Environmental , Catalysis , Diffusion Magnetic Resonance Imaging , Models, Molecular , Peptides/metabolism , Protein Binding , Protein Folding , Protein Structure, Secondary
3.
Microb Biotechnol ; 10(6): 1426-1433, 2017 11.
Article in English | MEDLINE | ID: mdl-28695652

ABSTRACT

In this study, we show the proof of concept for the production of defined oligo-isoprenoids with terminal functional groups that can be used as starting materials for various purposes including the synthesis of isoprenoid-based plastics. To this end, we used three types of rubber oxygenases for the enzymatic cleavage of rubber [poly(cis-1,4-isoprene)]. Two enzymes, rubber oxygenase RoxAXsp and rubber oxygenase RoxBXsp , originate from Xanthomonas sp. 35Y; the third rubber oxygenase, latex-clearing protein (LcpK30 ), is derived from Gram-positive rubber degraders such as Streptomyces sp. K30. Emulsions of polyisoprene (latex) were treated with RoxAXsp , RoxBXsp , LcpK30 or with combinations of the three proteins. The cleavage products were purified by solvent extraction and FPLC separation. All products had the same general structure with terminal functions (CHO-CH2 - and -CH2 -COCH3 ) but differed in the number of intact isoprene units in between. The composition and m/z values of oligo-isoprenoid products were determined by HPLC-MS analysis. Our results provide a method for the preparation of reactive oligo-isoprenoids that can likely be used to convert polyisoprene latex or rubber waste materials into value-added molecules, biofuels, polyurethanes or other polymers.


Subject(s)
Bacterial Proteins/chemistry , Latex/chemistry , Oxygenases/chemistry , Terpenes/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Biotransformation , Kinetics , Latex/metabolism , Oxygenases/genetics , Oxygenases/metabolism , Streptomyces/enzymology , Streptomyces/genetics , Terpenes/metabolism , Xanthomonas/enzymology , Xanthomonas/genetics
4.
Appl Environ Microbiol ; 83(14)2017 07 15.
Article in English | MEDLINE | ID: mdl-28500046

ABSTRACT

Only two types of rubber oxygenases, rubber oxygenase (RoxA) and latex clearing protein (Lcp), have been described so far. RoxA proteins (RoxAs) are c-type cytochromes of ≈70 kDa produced by Gram-negative rubber-degrading bacteria, and they cleave polyisoprene into 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD), a C15 oligo-isoprenoid, as the major end product. Lcps are common among Gram-positive rubber degraders and do not share amino acid sequence similarities with RoxAs. Furthermore, Lcps have much smaller molecular masses (≈40 kDa), are b-type cytochromes, and cleave polyisoprene to a mixture of C20, C25, C30, and higher oligo-isoprenoids as end products. In this article, we purified a new type of rubber oxygenase, RoxB Xsp (RoxB of Xanthomonas sp. strain 35Y). RoxB Xsp is distantly related to RoxAs and resembles RoxAs with respect to molecular mass (70.3 kDa for mature protein) and cofactor content (2 c-type hemes). However, RoxB Xsp differs from all currently known RoxAs in having a distinctive product spectrum of C20, C25, C30, and higher oligo-isoprenoids that has been observed only for Lcps so far. Purified RoxB Xsp revealed the highest specific activity of 4.5 U/mg (at 23°C) of all currently known rubber oxygenases and exerts a synergistic effect on the efficiency of polyisoprene cleavage by RoxA Xsp RoxB homologs were identified in several other Gram-negative rubber-degrading species, pointing to a prominent function of RoxB for the biodegradation of rubber in Gram-negative bacteria.IMPORTANCE The enzymatic cleavage of rubber (polyisoprene) is of high environmental importance given that enormous amounts of rubber waste materials are permanently released (e.g., by abrasion of tires). Research from the last decade has discovered rubber oxygenase A, RoxA, and latex clearing protein (Lcp) as being responsible for the primary enzymatic attack on the hydrophobic and water-insoluble biopolymer poly(cis-1,4-isoprene) in Gram-negative and Gram-positive rubber-degrading bacteria, respectively. Here, we provide evidence that a third type of rubber oxygenase is present in Gram-negative rubber-degrading species. Due to its characteristics, we suggest the designation RoxB for the new type of rubber oxygenase. Bioinformatic analysis of genome sequences indicates the presence of roxB homologs in other Gram-negative rubber degraders.


Subject(s)
Bacterial Proteins/metabolism , Latex/metabolism , Oxygenases/metabolism , Rubber/metabolism , Xanthomonas/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biodegradation, Environmental , Butadienes/metabolism , Hemiterpenes/metabolism , Kinetics , Oxygenases/chemistry , Oxygenases/genetics , Pentanes/metabolism , Xanthomonas/chemistry , Xanthomonas/genetics , Xanthomonas/metabolism
5.
Bio Protoc ; 7(6): e2188, 2017 Mar 20.
Article in English | MEDLINE | ID: mdl-34458497

ABSTRACT

Microbial biodegradation of rubber relies on extracellular rubber oxygenases that catalyze the oxidative cleavage of the double bond of the polyisoprene backbone into oligo-isoprenoids. This protocol describes the determination of rubber oxygenase activities by an online measurement of molecular oxygen consumption via a non-invasive fluorescence-based assay. The produced oligo-isoprenoid cleavage products with terminal keto- and aldehyde-groups are identified qualitatively and quantitatively by HPLC. Our method allows for the characterization of homologue rubber oxygenases, and can likely be adapted to assay other oxygenases consuming dioxygen. Here we describe the determination of rubber oxygenase activities at the examples of the so far two known types of rubber oxygenases, namely rubber oxygenase A (RoxA) and latex clearing protein (Lcp).

6.
Appl Environ Microbiol ; 82(22): 6593-6602, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27590810

ABSTRACT

Gram-positive rubber degraders such as Streptomyces sp. strain K30 cleave rubber [poly(cis-1,4-isoprene)] to low-molecular-mass oligoisoprenoid products with terminal keto and aldehyde groups by the secretion of a latex clearing protein (Lcp) designated rubber oxygenase. LcpK30 is a heme b cytochrome and has a domain of unknown function (DUF2236) that is characteristic of orthologous Lcps. Proteins with a DUF2236 domain are characterized by three highly conserved residues (R164, T168, and H198 in LcpK30). Exchange of R164 or T168 by alanine and characterization of the purified LcpK30 muteins revealed that both were stable and contained a heme group (red color) but were inactive. This finding identifies both residues as key residues for the cleavage reaction. The purified H198A mutein was also inactive and stable but was colorless due to the absence of heme. We constructed and characterized alanine muteins of four additional histidine residues moderately conserved in 495 LcpK30 homologous sequences (H203A, H232A, H259A, H266A). All muteins revealed wild-type properties, excluding any importance for activity and/or heme coordination. Since LcpK30 has only eight histidines and the three remaining residues (H103, H184, and H296) were not conserved (<11%), H198 presumably is the only essential histidine, indicating its putative function as a heme ligand. The second axial position of the heme is likely occupied by a not yet identified molecule. Mutational analysis of three strictly conserved arginine residues (R195, R202, R328) showed that R195A and R202A muteins were colorless and instable, suggesting that these residues are important for the protein stability. IMPORTANCE: Large amounts of rubber waste materials have been permanently released into the environment for more than a century, yet accumulation of rubber particles released, e.g., by abrasion of tires along highways has not been observed. This is indicative of the ubiquitous presence and activity of rubber-degrading microorganisms. Despite increasing research activities on rubber biodegradation during the last 2 decades, the knowledge of the enzymatic cleavage mechanism of rubber by latex clearing protein (Lcp) still is limited. In particular, the catalytic cleavage mechanism and the amino acids of Lcp proteins (Lcps) that are involved have not yet been identified for any Lcp. In this study, we investigated the importance of 10 amino acid residues of Lcp from Streptomyces sp. K30 (LcpK30) by mutagenesis, mutein purification, and biochemical characterization. We identified several essential residues, one of which most likely represents an axial heme ligand in Lcp of Streptomyces sp. K30.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Latex/metabolism , Streptomyces/metabolism , Alanine , Bacterial Proteins/genetics , Biodegradation, Environmental , Cloning, Molecular , Heme/metabolism , Histidine , Oxygenases/genetics , Oxygenases/metabolism , Protein Stability , Streptomyces/genetics
7.
BMC Microbiol ; 16: 92, 2016 May 23.
Article in English | MEDLINE | ID: mdl-27215318

ABSTRACT

BACKGROUND: Biodegradation of rubber (polyisoprene) is initiated by oxidative cleavage of the polyisoprene backbone and is performed either by an extracellular rubber oxygenase (RoxA) from Gram-negative rubber degrading bacteria or by a latex clearing protein (Lcp) secreted by Gram-positive rubber degrading bacteria. Only little is known on the biochemistry of polyisoprene cleavage by Lcp and on the types and functions of the involved cofactors. RESULTS: A rubber-degrading bacterium was isolated from the effluent of a rubber-processing factory and was taxonomically identified as a Rhodococcus rhodochrous species. A gene of R. rhodochrous RPK1 that coded for a polyisoprene-cleaving latex clearing protein (lcp Rr ) was identified, cloned, expressed in Escherichia coli and purified. Purified LcpRr had a specific activity of 3.1 U/mg at 30 °C and degraded poly(1,4-cis-isoprene) to a mixture of oligoisoprene molecules with terminal keto and aldehyde groups. The pH optimum of LcpRr was higher (pH 8) than for other rubber-cleaving enzymes (≈ pH 7). UVvis spectroscopic analysis of LcpRr revealed a cytochrome-specific absorption spectrum with an additional feature at long wavelengths that has not been observed for any other rubber-cleaving enzyme. The presence of one b-type haem in LcpRr as a co-factor was confirmed by (i) metal analysis, (ii) solvent extraction, (iii) bipyridyl assay and (iv) detection of haem-b specific m/z values via mass-spectrometry. CONCLUSIONS: Our data point to substantial differences in the active sites of Lcp proteins obtained from different rubber degrading bacteria.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Rhodococcus/growth & development , Rhodococcus/metabolism , Bacterial Proteins/chemistry , Biodegradation, Environmental , Catalytic Domain , Cloning, Molecular , Industrial Microbiology , Industrial Waste , Mass Spectrometry , Rhodococcus/classification , Rhodococcus/isolation & purification , Rubber/metabolism
8.
Appl Environ Microbiol ; 81(11): 3793-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25819959

ABSTRACT

Specific polyisoprene-cleaving activities of 1.5 U/mg and 4.6 U/mg were determined for purified Strep-tagged latex clearing protein (Lcp) of Streptomyces sp. strain K30 at 23 °C and 37 °C, respectively. Metal analysis revealed the presence of approximately one atom of iron per Lcp molecule. Copper, which had been identified in Lcp1VH2 of Gordonia polyisoprenivorans previously, was below the detection limit in LcpK30. Heme was identified as a cofactor in purified LcpK30 by (i) detection of characteristic α-, ß-, and γ (Soret)-bands at 562 nm, 532 nm, and 430 nm in the visible spectrum after chemical reduction, (ii) detection of an acetone-extractable porphyrin molecule, (iii) determination of a heme b-type-specific absorption maximum (556 nm) after chemical conversion of the heme group to a bipyridyl-heme complex, and (iv) detection of a b-heme-specific m/z value of 616.2 via mass spectrometry. Spectroscopic analysis showed that purified Lcp as isolated contains an oxidized heme-Fe(3+) that is free of bound dioxygen. This is in contrast to the rubber oxygenase RoxA, a c-type heme-containing polyisoprene-cleaving enzyme present in Gram-negative rubber degraders, in which the covalently bound heme firmly binds a dioxygen molecule. LcpK30 also differed from RoxA in the lengths of the rubber degradation cleavage products and in having a higher melting point of 61.5 °C (RoxA, 54.3 °C). In summary, RoxA and Lcp both are equipped with a heme cofactor and catalyze an oxidative C-C cleavage reaction but differ in the heme subgroup type and in several biochemical and biophysical properties. These findings suggest differences in the catalytic reaction mechanisms.


Subject(s)
Biophysical Phenomena , Cytochromes b/metabolism , Latex/metabolism , Oxygenases/metabolism , Streptomyces/enzymology , Coenzymes/analysis , Cytochromes b/chemistry , Cytochromes b/isolation & purification , Heme/analysis , Metals/analysis , Spectrum Analysis , Temperature , Transition Temperature
9.
Appl Environ Microbiol ; 79(20): 6391-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23934498

ABSTRACT

The rubber oxygenase (RoxA) of Xanthomonas sp. strain 35Y (RoxA(Xsp)) is so far the only known extracellular c-type diheme cytochrome that is able to cleave poly(cis-1,4-isoprene). All other rubber-degrading bacteria described are Gram positive and employ a nonheme protein (latex-clearing protein [Lcp]) for the postulated primary attack of polyisoprene. Here, we identified RoxA orthologs in the genomes of Haliangium ochraceum, Myxococcus fulvus, Corallococcus coralloides, and Chondromyces apiculatus. The roxA orthologs of H. ochraceum (RoxA(Hoc)), C. coralloides BO35 (RoxA(Cco)), and M. fulvus (RoxA(Mfu)) were functionally expressed in a ΔroxA Xanthomonas sp. 35Y background. All RoxA orthologs oxidatively cleaved polyisoprene, as revealed by restoration of clearing-zone formation and detection of 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD) as a cleavage product. RoxA(Xsp), RoxA(Mfu), and RoxA(Cco) were purified and biochemically characterized. The optimal temperature of RoxA(Cco) and RoxA(Mfu) was between 22 and 30°C. All RoxA orthologs as isolated showed an oxidized UV-visible spectrum. Chemical reduction of RoxA(Cco) and RoxA(Mfu) indicated the presence of two slightly different heme centers with absorption maxima between 549 and 553 nm, similar to RoxA(Xsp). Sequence analysis and modeling of the three-dimensional structures of the RoxA orthologs revealed a high degree of similarity to the recently solved RoxA(Xsp) structure and included several conserved residues, notably, W302, F317, and a MauG motif at about H517. Lcp-like sequences were not detected in the genomes of the Xanthomonas sp. 35Y, H. ochraceum, M. fulvus, and C. coralloides. No RoxA orthologs were found in Gram-positive bacteria, and this first description of functional RoxA in Gram-negative bacteria other than Xanthomonas proves that RoxA is more common among rubber degraders than was previously assumed.


Subject(s)
Geologic Sediments/microbiology , Myxococcales/enzymology , Oxygenases/isolation & purification , Rubber/metabolism , Soil Microbiology , Binding Sites , Cloning, Molecular , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Enzyme Stability , Gene Expression , Heme/metabolism , Models, Molecular , Molecular Sequence Data , Myxococcales/classification , Myxococcales/genetics , Myxococcales/isolation & purification , Oxidation-Reduction , Oxygenases/chemistry , Oxygenases/genetics , Oxygenases/metabolism , Protein Conformation , Sequence Analysis, DNA , Spectrophotometry, Ultraviolet , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...