Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 6: 7850, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26204562

ABSTRACT

Relief of iron (Fe) limitation in the Southern Ocean during ice ages, with potentially increased carbon storage in the ocean, has been invoked as one driver of glacial-interglacial atmospheric CO2 cycles. Ice and marine sediment records demonstrate that atmospheric dust supply to the oceans increased by up to an order of magnitude during glacial intervals. However, poor constraints on soluble atmospheric Fe fluxes to the oceans limit assessment of the role of Fe in glacial-interglacial change. Here, using novel techniques, we present estimates of water- and seawater-soluble Fe solubility in Last Glacial Maximum (LGM) atmospheric dust from the European Project for Ice Coring in Antarctica (EPICA) Dome C and Berkner Island ice cores. Fe solubility was very variable (1-42%) during the interval, and frequently higher than typically assumed by models. Soluble aerosol Fe fluxes to Dome C at the LGM (0.01-0.84 mg m(-2) per year) suggest that soluble Fe deposition to the Southern Ocean would have been ≥10 × modern deposition, rivalling upwelling supply.

2.
Proc Natl Acad Sci U S A ; 107(27): 12091-4, 2010 Jul 06.
Article in English | MEDLINE | ID: mdl-20566887

ABSTRACT

The deuterium excess of polar ice cores documents past changes in evaporation conditions and moisture origin. New data obtained from the European Project for Ice Coring in Antarctica Dome C East Antarctic ice core provide new insights on the sequence of events involved in Termination II, the transition between the penultimate glacial and interglacial periods. This termination is marked by a north-south seesaw behavior, with first a slow methane concentration rise associated with a strong Antarctic temperature warming and a slow deuterium excess rise. This first step is followed by an abrupt north Atlantic warming, an abrupt resumption of the East Asian summer monsoon, a sharp methane rise, and a CO(2) overshoot, which coincide within dating uncertainties with the end of Antarctic optimum. Here, we show that this second phase is marked by a very sharp Dome C centennial deuterium excess rise, revealing abrupt reorganization of atmospheric circulation in the southern Indian Ocean sector.


Subject(s)
Climate Change , Climate , Ice/analysis , Antarctic Regions , Atlantic Ocean , Carbon Dioxide/analysis , Deuterium/analysis , Environmental Monitoring/methods , Greenland , Indian Ocean , Methane/analysis , Seasons , Temperature , Time Factors
3.
Nature ; 440(7083): 491-6, 2006 Mar 23.
Article in English | MEDLINE | ID: mdl-16554810

ABSTRACT

Sea ice and dust flux increased greatly in the Southern Ocean during the last glacial period. Palaeorecords provide contradictory evidence about marine productivity in this region, but beyond one glacial cycle, data were sparse. Here we present continuous chemical proxy data spanning the last eight glacial cycles (740,000 years) from the Dome C Antarctic ice core. These data constrain winter sea-ice extent in the Indian Ocean, Southern Ocean biogenic productivity and Patagonian climatic conditions. We found that maximum sea-ice extent is closely tied to Antarctic temperature on multi-millennial timescales, but less so on shorter timescales. Biological dimethylsulphide emissions south of the polar front seem to have changed little with climate, suggesting that sulphur compounds were not active in climate regulation. We observe large glacial-interglacial contrasts in iron deposition, which we infer reflects strongly changing Patagonian conditions. During glacial terminations, changes in Patagonia apparently preceded sea-ice reduction, indicating that multiple mechanisms may be responsible for different phases of CO2 increase during glacial terminations. We observe no changes in internal climatic feedbacks that could have caused the change in amplitude of Antarctic temperature variations observed 440,000 years ago.


Subject(s)
Environment , Ice , Iron , Calcium/analysis , Climate , Iron/analysis , Marine Biology , Mesylates/analysis , Oceans and Seas , Periodicity , Sodium/analysis , South America
4.
Nature ; 431(7005): 147-51, 2004 Sep 09.
Article in English | MEDLINE | ID: mdl-15356621

ABSTRACT

Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period, with temperatures 5 degrees C warmer than today. We find unexpectedly large temperature differences between our new record from northern Greenland and the undisturbed sections of the cores from central Greenland, suggesting that the extent of ice in the Northern Hemisphere modulated the latitudinal temperature gradients in Greenland. This record shows a slow decline in temperatures that marked the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see-saw between the hemispheres (which dominated the last glacial period) was not operating at this time.

5.
Science ; 293(5537): 2074-7, 2001 Sep 14.
Article in English | MEDLINE | ID: mdl-11557889

ABSTRACT

A detailed deuterium excess profile measured along the Dome C EPICA (European Project for Ice Coring in Antarctica) core reveals the timing and strength of the sea surface temperature changes at the source regions for Dome C precipitation. We infer that an Oceanic Cold Reversal took place in the southern Indian Ocean, 800 years after the Antarctic Cold Reversal. The temperature gradient between the oceanic moisture source and Antarctica is similar to the Dome C sodium profile during the deglaciation, illustrating the strong link between this gradient and the strength of the atmospheric circulation.

8.
Mutat Res ; 219(4): 231-40, 1989 Jul.
Article in English | MEDLINE | ID: mdl-2505069

ABSTRACT

The formation and excision of UV-C light-induced cyclobutane-type pyrimidine photodimers were determined in cultures of human skin fibroblasts at time zero and several weeks following treatment with mitomycin C (MMC). Characteristic morphological changes of the fibroblasts and specific shifts in the [35S]methionine polypeptide pattern of total cellular proteins support the notion that MMC accelerates the differentiation pathway from mitotic (MF) to post-mitotic fibroblasts (PMF). No discernible difference could be detected between the fluence-response curves of pyrimidine dimers for untreated and MMC-treated repair-deficient xeroderma pigmentosum cells of group A. Furthermore we investigated the removal of pyrimidine dimers in 3 normal human skin fibroblast strains frequently used in mutation, transformation and aging research. We were able to demonstrate that no significant difference exists in the rate and extent of the excision-repair response to thymine-containing pyrimidine dimers following UV-irradiation shortly after MMC treatment of fibroblasts and in the MMC-induced PMF stage of these cells.


Subject(s)
DNA Repair , Fibroblasts/cytology , Mitomycins/pharmacology , Pyrimidine Dimers/metabolism , Ultraviolet Rays , Cell Differentiation/drug effects , Cells, Cultured , Chromatography, High Pressure Liquid , DNA/radiation effects , Fibroblasts/drug effects , Fibroblasts/radiation effects , Humans , Mitomycin , Mitosis , Xeroderma Pigmentosum/genetics
9.
J Invest Dermatol ; 91(6): 579-84, 1988 Dec.
Article in English | MEDLINE | ID: mdl-3192953

ABSTRACT

Cyclobutane-type pyrimidine photodimers as well as the induction of ornithine decarboxylase (ODC) may serve as biochemical markers of the mutagenic and carcinogenic effects of ultraviolet light (UV). For this reason, it is important to compare the formation of pyrimidine dimers with the induction of ODC in human skin fibroblasts after irradiation with UVC (200-290 nm) and UVB (290-320 nm). In our studies we determined cytosine-thymine (C-T) as well as thymine-thymine dimer yields (T-T) by high-pressure liquid chromatography in cultures of neonatal normal human foreskin-derived fibroblasts after irradiation with UVC and UVB light. It was found that the yield of dimerization and the ratio of T-T/C-T decreased from the UVC to the UVB region. Time-course studies of ODC-induction in the same cells indicated that the maximal activity after UVB irradiation was retarded compared to UVC exposure. For the UV-induced ODC-levels, however, no significant difference in maximal induction could be measured after UVC and UVB irradiation at fluences where comparable yields of thymine dimerization are produced. Similar ODC-maxima were obtained with strains from children, while cells from adults showed significantly less pronounced ODC induction, indicating that ODC-response decreases with age and may therefore be used as a marker of aging.


Subject(s)
Fibroblasts/radiation effects , Ornithine Decarboxylase/biosynthesis , Pyrimidine Dimers/biosynthesis , Skin/cytology , Adult , Child , Enzyme Induction , Female , Fibroblasts/enzymology , Humans , Male , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...